Skip to main content
Log in

Development of antibacterial ZnO-loaded cotton fabric based on in situ fabrication

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A method provided for the deposition of nanostructured ZnO on cotton fabric to introduce antibacterial functionality was presented in this article. This strategy enabled fabric to be coated with inorganic-based functional materials through in situ synthesis of nanoparticles using ultrasonic irradiation. The amino-terminated silicon sol (AEAPTS) was employed to generate nanostructured ZnO, and the mechanism of the ultrasound-assisted coating was proposed. Antibacterial activities, UV protection and other properties of ZnO-loaded cotton characterized by SEM, FTIR, XRD and TGA were investigated. The results indicated that ZnO-loaded cotton exhibited excellent UV protective property, efficient antibacterial activities, well water-resistant effect, together with moderate cytotoxicity against L929 and lower tensile strength. The developed method provides not only a facile way for in situ synthesis of ZnO on textile but also the production of antibacterial materials for healthcare applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Lombi et al., Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 111, 352–358 (2014)

    Article  Google Scholar 

  2. S.T. Dubas, P. Kumlangdudsana, P. Potiyaraj, Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A Physicochem. Eng. Asp. 289(1–3), 105–109 (2006)

    Article  Google Scholar 

  3. Y. Xing, X. Yang, J. Dai, Antimicrobial finishing of cotton textile based on water glass by sol–gel method. J. Sol-Gel Sci. Technol. 43(2), 187–192 (2007)

    Article  Google Scholar 

  4. M.B. Radoičić et al., Influence of TiO2 nanoparticles on formation mechanism of PANI/TiO2 nanocomposite coating on PET fabric and its structural and electrical properties. Surf. Coat. Technol. 278, 38–47 (2015)

    Article  Google Scholar 

  5. M. Montazer, A. Mozaffari, F. Alimohammadi, Simultaneous dyeing and antibacterial finishing of nylon fabric using acid dyes and colloidal nanosilver. Fibres Text. East. Eur. 23(2), 110 (2015)

    Google Scholar 

  6. J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 54(2), 177–182 (2003)

    Article  Google Scholar 

  7. R. Prucek et al., The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32(21), 4704–4713 (2011)

    Article  Google Scholar 

  8. H.R. Jafry et al., Simple route to enhanced photocatalytic activity of P25 titanium dioxide nanoparticles by silica addition. Environ. Sci. Technol. 45(4), 1563–1568 (2010)

    Article  ADS  Google Scholar 

  9. S. Coyle et al., Smart nanotextiles: a review of materials and applications. MRS Bull. 32(05), 434–442 (2007)

    Article  Google Scholar 

  10. H.F. Moafi, A.F. Shojaie, M.A. Zanjanchi, Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide. Thin Solid Films 519(11), 3641–3646 (2011)

    Article  ADS  Google Scholar 

  11. Z.A. Lewicka et al., The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercial sunscreens. J. Nanopart. Res. 13(9), 3607–3617 (2011)

    Article  MathSciNet  Google Scholar 

  12. T.E. Antoine et al., Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes. J. Immunol. 196(11), 4566–4575 (2016)

    Article  Google Scholar 

  13. R. Wahab et al., Self-styled ZnO nanostructures promotes the cancer cell damage and supresses the epithelial phenotype of glioblastoma. Sci. Rep. 6, 19950 (2016)

    Article  ADS  Google Scholar 

  14. A. Becheri et al., Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J. Nanopart. Res. 10(4), 679–689 (2007)

    Article  Google Scholar 

  15. N. Vigneshwaran et al., Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology 17(20), 5087 (2006)

    Article  ADS  Google Scholar 

  16. Z. Mao et al., The formation and UV-blocking property of needle-shaped ZnO nanorod on cotton fabric. Thin Solid Films 517(517), 2681–2686 (2009)

    Article  ADS  Google Scholar 

  17. S. Baruah, C. Thanachayanont, J. Dutta, Growth of ZnO nanowires on nonwoven polyethylene fibers. Sci. Technol. Adv. Mater. 9(2), 25009 (2008)

    Article  Google Scholar 

  18. A. Yadav et al., Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull. Mater. Sci. 29(6), 641–645 (2006)

    Article  Google Scholar 

  19. Ş.S. Ugur et al., Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Res. Lett. 5(7), 1204–1210 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. W.S. Tung, W.A. Daoud, Self-cleaning fibers via nanotechnology: a virtual reality. J. Mater. Chem. 21(22), 7858–7869 (2011)

    Article  Google Scholar 

  21. R. Wahab et al., ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells. J. Biomed. Nanotechnol. 9(7), 1181 (2013)

    Article  Google Scholar 

  22. H. Papavlassopoulos et al., Toxicity of functional nano-micro zinc oxide tetrapods: impact of cell culture conditions, cellular age and material properties. PLoS One 9(1), e84983 (2014)

    Article  ADS  Google Scholar 

  23. C. Wu et al., A novel chemical route to prepare ZnO nanoparticles. Mater. Lett. 60(15), 1828–1832 (2006)

    Article  Google Scholar 

  24. H. Zhao et al., Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr. Polym. 68(2), 235–241 (2007)

    Article  Google Scholar 

  25. I. Perelshtein et al., Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Appl. Mater. Interfaces 1(2), 361–366 (2009)

    Article  Google Scholar 

  26. P. Zhu et al., A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY-GC-MS. J. Anal. Appl. Pyrol. 71(2), 645–655 (2004)

    Article  ADS  Google Scholar 

  27. A. Hou, C. Zhang, Y. Wang, Preparation and UV-protective properties of functional cellulose fabrics based on reactive azobenzene Schiff base derivative. Carbohydr. Polym. 87(1), 284–288 (2012)

    Article  MathSciNet  Google Scholar 

  28. G.Y. Liu et al., Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202(2), 209–215 (2005)

    Article  Google Scholar 

  29. D. Yan et al., Cellular compatibility of biomineralized ZnO nanoparticles based on prokaryotic and eukaryotic systems. Langmuir 27(21), 13206 (2011)

    Article  Google Scholar 

  30. G. Begum et al., Morphology-controlled assembly of ZnO nanostructures: a bioinspired method and visible luminescence. Chem. Eur. J. 14(21), 6421–6427 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (No. 21303014) and the Shanghai Natural Science Foundation (14ZR1401300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Zhu Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, XZ., Bremner, D.H., Wan, N. et al. Development of antibacterial ZnO-loaded cotton fabric based on in situ fabrication. Appl. Phys. A 122, 940 (2016). https://doi.org/10.1007/s00339-016-0482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0482-0

Keywords

Navigation