Skip to main content
Log in

Growth and tribological properties of diamond films on silicon and tungsten carbide substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hot filament chemical vapor deposition technique was used to deposit microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) films on silicon (Si) and tungsten carbide (WC-6Co) substrates. Friction coefficient of larger diamond grains deposited on WC-6Co substrate shows less value approximately 0.2 while this differs marginally on films grown on Si substrate. The study claims that for a less friction coefficient, the grain size is not necessarily smaller. However, the less friction coefficient (less than 0.1 saturated value) in MCD and NCD deposited on Si is explained by the formation of graphitized tribolayer. This layer easily forms when diamond phase is thermodynamically unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.A. Brookes, E.J. Brookes, Diamond on perspective a review of mechanical properties of natural diamond. Diam. Relat. Mater. 1, 13–17 (1991)

    Article  ADS  Google Scholar 

  2. K. Miyoshi, Structures and mechanical properties of natural and synthetic diamonds. Diam. Films Technol. 8, 153–172 (1995)

    Google Scholar 

  3. A. Erdemir, O.L. Eryilmaz, G. Fenske, Synthesis of diamond like carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. 18, 1987–1992 (2000)

    Article  ADS  Google Scholar 

  4. A.V. Sumant, O. Auciello, M. Liao, O.A. Williams, MEMS/NEMS based on mano-, nano-, and ultrananocrystalline diamond films. MRS Bull. 39, 511–516 (2014)

    Article  Google Scholar 

  5. A. Erdimer, C. Donnet, in Modern Tribology Handbook, chap. 24, ed. by B. Bhushan (CRC Press, Boca Raton, 2000)

  6. D.R. Gilbert, D.G. Lee, R.K. Singh, Novel in situ production of smooth diamond films. J. Mater. Res. 13, 1735–1737 (1998)

    Article  ADS  Google Scholar 

  7. R. Erz, W. Doetter, K. Jung, H. Ehrhardt, Preparation of smooth and nanocrystalline diamond films. Diam. Relat. Mater. 2, 449–453 (1993)

    Article  ADS  Google Scholar 

  8. S. Hogmark, P. Hollman, A. Alahelisten, P. Hedenqvist, Direct current bias applied to hot flame diamond deposition produces smooth low friction coatings. Wear 200, 225–232 (1996)

    Article  Google Scholar 

  9. F.P. Bowden, Tabor D. Friction, Lubrication of Solids. (Part I, Part II, (1964) (Clarendon Press, Oxford, 1950)

    Google Scholar 

  10. Y. Enomoto, D. Tabor, The properties of diamond. Proc. R. Soc. Lond. 373, 405–417 (1981)

    Article  ADS  Google Scholar 

  11. F.P. Bowden, A.E. Hanwell, The friction of clean crystal surfaces. Proc. R. Soc. 295, 233–243 (1966)

    Article  ADS  Google Scholar 

  12. S. Chandrasekar, B. Bhushan, The role of environment in the friction of diamond for magnetic recording head applications. Wear 153, 79–89 (1992)

    Article  Google Scholar 

  13. M. Kohzaki, S. Noda, Tribological properties of CVD diamond films in various environments. Diam. Films Technol. 3, 135–148 (1994)

    Google Scholar 

  14. F.P. Bowden, J.E. Young, Friction of diamond, graphite, and carbon and influence of surface films. Proc. R. Soc. Lond. 208, 444–455 (1951)

    Article  ADS  Google Scholar 

  15. M. Casey, J. Wilks, The friction of diamond sliding on polished cube faces of diamond. J. Phys. D Appl. Phys. 6, 1772–1781 (1973)

    Article  ADS  Google Scholar 

  16. B. Samuels, J.J. Wilks, The friction of diamond sliding on diamond. J. Mater. Sci. 23, 2846–2864 (1988)

    Article  ADS  Google Scholar 

  17. K. Panda, N. Kumar, B.K. Panigrahi, S.R. Polaki, S. Sundaravel, S. Dash, A.K. Tyagi, I.N. Lin, Tribol. Int. 57(9), 124–136 (2013)

    Article  Google Scholar 

  18. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  ADS  Google Scholar 

  19. Costas A. Charitidis, Elias P. Koumoulos, Dimitrios A. Dragatogiannis, Nanotribological behavior of carbon based thin films: friction and lubricity mechanisms at the nanoscale. Lubricants 1, 22–27 (2013)

    Article  Google Scholar 

  20. A. Bogus, I.C. Gebeshuber, A. Pauschitz, M. Roy, R. Haubner, Micro and nanomechanical properties of diamond film with various surface morphologies. Diam. Relat. Mater. 17, 1998–2004 (2008)

    Article  ADS  Google Scholar 

  21. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 64, 75414–75426 (2001)

    Article  ADS  Google Scholar 

  22. N. Kumar, R. Ramadoss, A.T. Kozakov, K.J. Sankaran, S. Dash, A.K. Tyagi, N.H. Tai, I.N. Lin, Humidity-dependent friction mechanism in an ultrananocrystalline diamond film. J. Phys. D Appl. Phys. 46, 275501–275509 (2013)

    Article  ADS  Google Scholar 

  23. R. Dumpala, M. Chandran, N. Kumar, S. Dash, B. Ramamoorthy, M.S.R. Rao, Growth and characterization of integrated nano-and microcrystalline dual layer composite diamond coatings on WC-Co substrates. Int. J. Ref. Met. Hard Mater. 37, 127–133 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Department of Science and Technology (DST) of India for the financial support (Grant No. SR/NM/NAT-02/2005). Dr. Niranjan Kumar, IGCAR is acknowledged for the Tribology measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Radhika or M. S. Ramachandra Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhika, R., Ramachandra Rao, M.S. Growth and tribological properties of diamond films on silicon and tungsten carbide substrates. Appl. Phys. A 122, 937 (2016). https://doi.org/10.1007/s00339-016-0473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0473-1

Keywords

Navigation