Skip to main content
Log in

Vanadium oxides (V2O5) prepared with different methods for application as counter electrodes in dye-sensitized solar cells (DSCs)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

V2O5 was synthesized by four different procedures employing thermal decomposition, sol–gel, and hydrothermal methods which were subsequently introduced into dye-sensitized solar cells (DSCs) as counter electrode (CE) catalysts for the regeneration of traditional iodide/triiodide (I/I3 ) redox couple. The catalytic activities of as-prepared V2O5 were significantly affected by the synthetic routes as evidenced by cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization curve. Power conversion efficiency (PCE) of the DSCs employing V2O5 CE, fabricated by thermal decomposition method, was observed to be 3.80 % by using citric acid as an additive, while the PCE of the DSCs using V2O5 CE prepared by hydrothermal and thermal decomposition methods without additive, as well as by a sol–gel procedure, was determined to be 2.13, 2.08, and 2.04 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Grätzel, Nature 414, 338 (2001)

    Article  ADS  Google Scholar 

  2. S. Ameen, M.S. Akhtar, H.K. Seo, Y.S. Kim, H.S. Shin, Chem. Eng. J. 187, 351 (2012)

    Article  Google Scholar 

  3. N. Shahzad, F. Risplendi, D. Pugliese, S. Bianco, A. Sacco, A. Lamberti, R. Gazia, E. Tresso, G. Cicero, J. Phys. Chem. C 117, 22778 (2013)

    Article  Google Scholar 

  4. A. Teresa, N. Javier, A. Rodrigo, F.L. Concha, B. Ginesa, S.C. Antonio, M.C. Joaquín, Appl. Phys. A 121, 1261 (2015)

    Article  Google Scholar 

  5. P.Z. Yang, Z.Y. Zhao, L. Zhu, Q.W. Tang, J. Alloys Compd. 648, 930 (2015)

    Article  Google Scholar 

  6. M.Y.A. Rahman, L. Roza, A.A. Umar, M.M. Salleh, J. Alloys Compd. 648, 86 (2015)

    Article  Google Scholar 

  7. M.X. Wu, X. Lin, Y.D. Wang, L. Wang, W. Guo, D.D. Qi, X.J. Peng, A. Hagfeldt, M. Grätzel, T.L. Ma, J. Am. Chem. Soc. 134, 3419 (2012)

    Article  Google Scholar 

  8. E. Olsen, G. Hagen, S.E. Lindquist, Sol. Energy Mater. Sol. Cells 63, 267 (2000)

    Article  Google Scholar 

  9. D.J. Zheng, M.D. Ye, X.R. Wen, N. Zhang, C.J. Lin, Sci. Bull. 60, 850 (2015)

    Article  Google Scholar 

  10. Y.Y. Lia, C.T. Lia, M.H. Yeh, K.C. Huang, P.W. Chen, R. Vittala, K.C. Ho, Electrochim. Acta 179, 211 (2015)

    Article  Google Scholar 

  11. L. Seksan, P. Samuk, M. Wasan, A. Vittaya, Mater. Lett. 158, 115 (2015)

    Article  Google Scholar 

  12. X.P. Ma, G.T. Yue, J.H. Wu, Z. Lan, Nanoscale Res. Lett. 10, 327 (2015)

    Article  ADS  Google Scholar 

  13. Q.W. Tang, J. Liu, H.H. Zhang, B.L. He, L.M. Yu, J. Power Sources 297, 1 (2015)

    Article  ADS  Google Scholar 

  14. M. Lee, S.K. Balasingam, Y. Ko, H.Y. Jeong, B.K. Min, Y.J. Yun, Y. Jun, Synth. Met. 215, 110 (2016)

    Article  Google Scholar 

  15. H. Tsai, P.H. Fei, C.H. Chen, Materials 8, 5715 (2015)

    Article  ADS  Google Scholar 

  16. J.B. Jia, J.H. Wu, Y.G. Tu, J.H. Huo, M. Zheng, J.M. Lin, J. Alloys Compd. 640, 29 (2015)

    Article  Google Scholar 

  17. M.M. Rashad, A.E. Shalan, Appl. Phys. A 116, 781 (2014)

    Article  ADS  Google Scholar 

  18. D.P. Joseph, M. Saravanan, B. Muthuraaman, P. Renugambal, S. Sambasivam, S.P. Raja, P. Maruthamuthu, C. Venkateswaran, Nanotechnology 19, 485707 (2008)

    Article  Google Scholar 

  19. M. Kovendhan, D.P. Joseph, P. Manimuthu, A. Sendilkumar, S.N. Karthick, S. Sambasivam, K. Vijayarangamuthu, H.J. Kim, B.C. Choi, K. Asokan, C. Venkateswaran, R. Mohan, Curr. Appl. Phys. 15, 622 (2015)

    Article  ADS  Google Scholar 

  20. M.X. Wu, H.Y. Guo, Y.N. Lin, K.Z. Wu, T.L. Ma, A. Hagfeldt, J. Phys. Chem. C 118, 12625 (2014)

    Article  Google Scholar 

  21. M.X. Wu, Y.N. Lin, H.Y. Guo, K.Z. Wu, X. Lin, Chem. Commun. 50, 7625 (2014)

    Article  Google Scholar 

  22. L.J. Sun, L. Lu, Y. Bai, K.M. Sun, J. Alloys Compd. 654, 196 (2016)

    Article  Google Scholar 

  23. S.L. Chen, A.C. Xu, J. Tao, H.J. Tao, Sustain. Chem. Eng. 3, 2652 (2015)

    Article  Google Scholar 

  24. Z.G. Zhao, M. Miyauchi, Angew. Chem. Int. Ed. 47, 7051 (2008)

    Article  Google Scholar 

  25. Q. Yuan, A.X. Yin, C. Luo et al., J. Am. Chem. Soc. 130, 3465 (2008)

    Article  Google Scholar 

  26. Y. Wang, J. Cao, S. Wang et al., J. Phys. Chem. C 112, 17804 (2008)

    Article  Google Scholar 

  27. P. Vijayakumar, M. Senthil Pandian, S.M. Ramasamy, J. Sol-Gel Sci. Technol. 75, 487 (2015)

    Article  Google Scholar 

  28. M. Shahpari, A. Behjat, M. Khajaminian, N. Torabi, Sol. Energy 119, 45 (2015)

    Article  ADS  Google Scholar 

  29. W. Yan, M. Hu, D. Wang, C. Li, Appl. Surf. Sci. 346, 216 (2015)

    Article  ADS  Google Scholar 

  30. K. Deshmukh, M.B. Ahamed et al., Eur. Polym. J. 76, 14 (2016)

    Article  Google Scholar 

  31. J. Chu, Z.Z. Kong, D.Y. Lu, W.L. Zhang, X.S. Wang, Y.F. Yu, S. Li, X.Q. Wang, S.X. Xiong, J. Ma, Mater. Lett. 166, 179 (2016)

    Article  Google Scholar 

  32. L. Ren, M.H. Cao, S.F. Shi, C.W. Hu, Mater. Res. Bull. 47, 85 (2012)

    Article  Google Scholar 

  33. J.B. Xia, C.C. Yuan, S. Yanagida, A.C.S. Appl, Mater. Interfaces 2, 2136 (2010)

    Article  Google Scholar 

  34. L. Li, Q. Lu, W.Y. Li, X.W. Li, A. Hagfeldt, W.M. Zhang, M.X. Wu, J. Power Sources 308, 37 (2016)

    Article  ADS  Google Scholar 

  35. J.H. Huo, J.H. Wu, M. Zheng, Y.G. Tu, Z. Lan, J. Power Sources 304, 266 (2016)

    Article  ADS  Google Scholar 

  36. C.K. Cheng, C.H. Lin, H.C. Wu, C.C.M. Ma, T.K. Yeh, H.Y. Chou, C.H. Tsai, C.K. Hsieh, Nanoscale Res. Lett. 11, 117 (2016)

    Article  ADS  Google Scholar 

  37. F. Gong, H. Wang, X. Xu, G. Zhou, Z.S. Wang, J. Am. Chem. Soc. 134, 10953 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by The National Natural Science Foundation of China (Nos. 21473048, 21303039), The Natural Science Foundation of Hebei Province (Nos. B2015205163, B2016205161, B2013205171), Science Foundation of Hebei Normal University (L2016J02), the Second Batch of Young Talent of Hebei Province, Support Program for Hundred Excellent Innovation Talents from the Universities of Hebei Province, BR2-220), and 2015 Hebei Province Undergraduate Training Programs for Innovation and Entrepreneurship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxing Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Sun, X., Duan, C. et al. Vanadium oxides (V2O5) prepared with different methods for application as counter electrodes in dye-sensitized solar cells (DSCs). Appl. Phys. A 122, 787 (2016). https://doi.org/10.1007/s00339-016-0317-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0317-z

Keywords

Navigation