Skip to main content
Log in

Photoelectron spectroscopy study of AlN films grown on n-type 6H-SiC by MOCVD

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Photoelectron spectroscopy has been employed to analyze the content and chemical states of the elements on the surface of AlN films with different thickness, which are synthesized by metalorganic chemical vapor deposition on the n-type SiC substrates under low pressure. It is found that, besides the carbon and gallium on the AlN surface, the atom percentage of surface oxygen increases from 4.9 to 8.4, and the electron affinity also increases from 0.36 to 0.97 eV, when the thickness of AlN films increase from 50 to 400 nm. Furthermore, accompanying with the high-resolution XPS spectra of the O 1s, it is speculated that surface oxygen may be the major influence on the electron affinity, where the surface oxygen changes the surface chemical states through replacing N to form Al–O bond and Ga–O bond, although there are also a few of Ga and C contaminations in the chemical sate of Ga–O and C–C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.B. Tang, H.T. Cong, Z.M. Wang, H.M. Cheng, Appl. Phys. Lett. 89, 253112 (2006)

    Article  ADS  Google Scholar 

  2. K. Asghar, D. Das, J. Semicond. 37, 036001 (2016)

    Article  ADS  Google Scholar 

  3. E. Cicek, R. McClintock, C.Y. Cho, B. Rahnema, M. Razeghi, Appl. Phys. Lett. 103, 181113 (2013)

    Article  ADS  Google Scholar 

  4. M. Yang, M. Chong, D.G. Zhao et al., J. Semicond. 35, 064008 (2014)

    Article  Google Scholar 

  5. M. Martens, F. Mehnke, C. Kuhn et al., IEEE Photonics Technol. Lett. 26, 342 (2014)

    Article  ADS  Google Scholar 

  6. X.B. Song, G.D. Gu, Y.G. Wang et al., J. Semicond. 37, 044007 (2016)

    Article  Google Scholar 

  7. M.H. Wong, Y. Pei, J.S. Speck, U.K. Mishra, Appl. Phys. Lett. 94, 182103 (2009)

    Article  ADS  Google Scholar 

  8. Y.H. Chen, X.F. Zheng, J.C. Zhang et al., J. Semicond. 37, 055002 (2016)

    Article  Google Scholar 

  9. D. Hofstetter, E. Baumann, F.R. Giorgetta et al., Proc. IEEE 98, 1234 (2010)

    Article  Google Scholar 

  10. C.M. Lin, Y.Y. Yu, V.V. Felmetsger et al., J. Micromech. Microeng. 23, 025019 (2013)

    Article  ADS  Google Scholar 

  11. J.T. Zhao, Z.J. Lin, C.B. Luan et al., J. Semicond. 35, 124003 (2014)

    Article  Google Scholar 

  12. Y.X. Yu, Z.J. Lin, Y.J. Lv et al., J. Semicond. 35, 124007 (2014)

    Article  Google Scholar 

  13. M.C. Benjamin, C. Wang, R.F. Davis, R.J. Nemanich, Appl. Phys. Lett. 64, 3288 (1994)

    Article  ADS  Google Scholar 

  14. C.I. Wu, A. Kahn, E.S. Hellman, D.N.E. Buchanan, Appl. Phys. Lett. 73, 1346 (1998)

    Article  ADS  Google Scholar 

  15. C.I. Wu, A. Kahn, Appl. Phys. Lett. 74, 546 (1999)

    Article  ADS  Google Scholar 

  16. C.I. Wu, A. Kahn, Appl. Phys. Lett. 74, 1433 (1999)

    Article  ADS  Google Scholar 

  17. A.T. Sowers, J.A. Christman, M.D. Bremser et al., Appl. Phys. Lett. 71, 2289 (1997)

    Article  ADS  Google Scholar 

  18. Y. Taniyasu, M. Kasu, T. Makimoto, N. Kobayashi, Phys. Status Solidi A 200, 199 (2003)

    Article  ADS  Google Scholar 

  19. Y. Taniyasu, M. Kasu, T. Makimoto, Appl. Phys. Lett. 84, 2115 (2004)

    Article  ADS  Google Scholar 

  20. S.W. King, J.P. Barnak, M.D. Bremser et al., J. Appl. Phys. 84, 5248 (1998)

    Article  ADS  Google Scholar 

  21. D. Chen, D. Xu, J.J. Wang, Y.F. Zhang, J. Phys. D Appl. Phys. 41, 235303 (2008)

    Article  ADS  Google Scholar 

  22. T. Mattila, R.M. Nieminen, Phys. Rev. B 54, 16676 (1996)

    Article  ADS  Google Scholar 

  23. L. Silvestri, K. Dunn, S. Prawer, F. Ladouceur, Appl. Phys. Lett. 99, 122109 (2011)

    Article  ADS  Google Scholar 

  24. A. Kakanakova-Georgieva, D. Nilsson, X.T. Trinh, Appl. Phys. Lett. 102, 132113 (2013)

    Article  ADS  Google Scholar 

  25. T.F. Kuech, D.J. Wolford, E. Veuhoff, V. Deline, J. Appl. Phys. 62, 632 (1987)

    Article  ADS  Google Scholar 

  26. P. Motamedi, K. Cadien, Appl. Surf. Sci. 315, 104 (2014)

    Article  ADS  Google Scholar 

  27. F.L.M. Khir, M. Myers, A. Podolska, Appl. Surf. Sci. 314, 850 (2014)

    Article  ADS  Google Scholar 

  28. C. Han, Y.M. Zhang, Q.W. Song et al., J. Semicond. 36, 123006 (2015)

    Article  Google Scholar 

  29. J. Kim, Z. Lochner, M.H. Ji et al., J. Cryst. Growth 388, 143 (2014)

    Article  ADS  Google Scholar 

  30. S. Choi, H.J. Kim, Z. Lochner et al., J. Cryst. Growth 388, 137 (2014)

    Article  ADS  Google Scholar 

  31. K. Zhou, M. Ikeda, J.P. Liu et al., J. Cryst. Growth 409, 51 (2015)

    Article  ADS  Google Scholar 

  32. J. van der Weide, R.J. Nemanich, J. Vac. Sci. Technol. B 10, 1940 (1992)

    Article  Google Scholar 

  33. J. van der Weide, Z. Zhang, P.K. Baumann, Phys. Rev. B 50, 5803 (1994)

    Article  ADS  Google Scholar 

  34. P. Motamedi, K. Cadien, J. Cryst. Growth 421, 45 (2015)

    Article  ADS  Google Scholar 

  35. V.M. Bermudez, J. Appl. Phys. 80, 1190 (1996)

    Article  ADS  Google Scholar 

  36. J.Q. Wu, S.Z. Deng, N.S. Xu, J. Chen, Appl. Surf. Sci. 292, 454 (2014)

    Article  ADS  Google Scholar 

  37. G. Schön, J. Electron Spectrosc. 2, 75 (1973)

    Article  Google Scholar 

  38. W. Wei, Z.X. Qin, S.F. Fan et al., Nanoscale Res. Lett. 7, 562 (2012)

    Article  ADS  Google Scholar 

  39. E. Paparazzo, Surf. Interface Anal. 12, 115 (1988)

    Article  Google Scholar 

  40. P. Motamedi, K. Cadien, Appl. Surf. Sci. 315, 104 (2014)

    Article  ADS  Google Scholar 

  41. G. Martin, S. Strite, A. Botchkarev, Appl. Phys. Lett. 65, 610 (1994)

    Article  ADS  Google Scholar 

  42. G. Martin, A. Botchkarev, A. Rockett, Appl. Phys. Lett. 68, 2541 (1996)

    Article  ADS  Google Scholar 

  43. M. Kumar, A. Kumar, S.B. Thapa, Mater. Sci. Eng. B 186, 89 (2014)

    Article  Google Scholar 

  44. D. Sadowska, A. Gladki, K. Mazur, E. Talik, Vacuum 72, 217 (2004)

    Article  Google Scholar 

  45. J.L. Lyons, A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 97, 152108 (2010)

    Article  ADS  Google Scholar 

  46. M.A. Reshchikov, H. Morkoç, J. Appl. Phys. 97, 061301 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 61574135, 61574134, 61474142, 61474110, 61377020, 61376089, 61223005, and 61321063), One Hundred Person Project of the Chinese Academy of Sciences, and Basic Research Project of Jiangsu Province (Grant No. BK20130362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Chen, P., Zhao, D.G. et al. Photoelectron spectroscopy study of AlN films grown on n-type 6H-SiC by MOCVD. Appl. Phys. A 122, 789 (2016). https://doi.org/10.1007/s00339-016-0312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0312-4

Keywords

Navigation