Skip to main content
Log in

Fabrication and characterization of GaN/InGaN MQW solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the p-GaN/i-GaN–InGaN (5MQW)/n-GaN solar cell with 33 % indium composition is grown, fabricated and characterized. The X-ray diffraction, atomic force microscopy and photoluminance are performed for the solar cell. The photovoltaic parameters are short-circuit current (0.30 mA/cm2), open-circuit voltage (1.69 V), fill factor (41.3 %) and efficiency (0.21 %) under AM 1.5G illumination. The crystallite size of 379 Å and strain of 0.335 % is calculated with the help of Williamson–Hall analysis. Series resistance and shunt resistance are 62 kΩ and 0.10 MΩ, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Mahala, S.K. Behura, A.S. Kushwaha, A. Ray, O. Jani, C. Dhanavantri, A study on the 2D simulation of Pt/InGaN/GaN/metal Schottky junction solar cell. Semicond. Sci. Technol. 28, 055012 (2013)

    Article  ADS  Google Scholar 

  2. P. Mahala, S.K. Behura, A. Ray, C. Dhanavantri, O. Jani, Effect of Indium concentration on metal/n-InxGa1-xN Schottky junction solar cell under low level injection, in 3rd International Conference on Advances in Energy Res (ICARE-2011) at IIT-Bombay (Mumbai, 2011)

  3. A. Yamamoto, M.R. Islam, T.T. Kang, A. Hashimoto, Recent advances in InN-based solar cells: status and challenges in InGaN and InAlN solar cells. Phys. Status Solid C 7, 1309 (2010)

    Article  Google Scholar 

  4. A. Melton, B. Jampana, N. Li, M. Jamil, T. Zaidi, W. Fenwick, R. Opila, C. Honsberg, I. Ferguson, High indium composition (>20%) InGaN epi-layers on Zno substrates for very high efficiency solar cells, in IEEE Conference Proceeding (2010), p. 978-1-4244-2950

  5. G.F. Brown, J.W. Ager III, W. Walukiewicz, J. Wu, Finite element simulations of compositionally graded InGaN solar cells. Sol. Energy Mater. Sol. Cells 94, 478 (2010)

    Article  Google Scholar 

  6. W. Feng, X.K. Cao, J. Li, J.Y. Lin, H.X. Jiang, N. Sawaki, Y. Honda, T. Tanikawa, J.M. Zavada, Photonic properties of erbium doped InGaN alloys grown on Si (001) substrates. Appl. Phys. Lett. 98, 081102 (2011)

    Article  ADS  Google Scholar 

  7. M. Horie, K. Sugita, A. Hashimoto, A. Yamamoto, MOVPE growth and Mg doping of InGaN for solar cells. Sol. Energy Mater. Sol. Cells 93, 1013 (2009)

    Article  Google Scholar 

  8. J. Neufeld, Z. Chen, S.C. Cruz, N.G. Toledo, S.P. Den, U.K. Mishra, Optimization of the P-GaN window layer for InGaN/GaN solar cells, in IEEE Conference Proceeding (2010), p. 978-1-4244-5892-9

  9. J.J. Wierer, A.J. Fischer, D.D. Koleske, The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices. Appl. Phys. Lett. 96, 051107 (2010)

    Article  ADS  Google Scholar 

  10. J.R. Lang, C.J. Neufeld, C.A. Hurni, S.C. Cruz, E. Matioli, U.K. Mishra, J.S. Speck, High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy. Appl. Phys. Lett. 98, 131115 (2011)

    Article  ADS  Google Scholar 

  11. J.Y. Chang, Y.K. Kuo, Comment on “The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) faces GaN–InGaN photovoltaic devices” Appl. Phys. Lett. 96, 051107, 2010. Appl. Phys. Lett. 98, 036101 (2011)

    Article  ADS  Google Scholar 

  12. Y. Fujiyama, Y. Kuwahara, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, GaInN/GaN p-i-n light-emitting solar cells. Phys. Status Solid C 7, 2382 (2010)

    Article  Google Scholar 

  13. E. Matioli, C. Neufeld, M. Iza, S.C. Cruz, A.A. Al-Heji, X. Chen, R.M. Farrell, S. Keller, S.D. Baars, U. Mishra, S. Nakamura, J. Speck, C. Weisbuch, High internal and external quantum efficiency InGaN/GaN solar cells. Appl. Phys. Lett. 98, 021102 (2011)

    Article  ADS  Google Scholar 

  14. C.J. Neufeld, N.G. Toledo, S.C. Cruz, M. Iza, S.P. Baars, U.K. Mishra, High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Appl. Phys. Lett. 93, 143502 (2008)

    Article  ADS  Google Scholar 

  15. O. Jani, P. Mahala, S.K. Behura, A. Ray, C. Dhanavantri, The effect of indium composition on open-circuit voltage of InGaN thin-film solar cell: an analytical and computer simulation study. AIP Conf. Proc. 1451, 85 (2012). doi:10.1063/1.4732375

    Article  ADS  Google Scholar 

  16. P. Mahala, A. Ray, O. Jani, C. Dhanavantri, Optimization of InGaN/GaN p-i-n solar cell, in TAPSUN-2012, at CSIR-NPL (New Delhi, 2012)

  17. P. Mahala, S.K. Behura, A. Ray, C. Dhanavantri, O. Jani, GaN/InxGa1-xN/GaN P-I-N solar cell with Indium compositional grading. Opt. Quantum Electron. 47(5), 1117–11126 (2015)

    Article  Google Scholar 

  18. N. Matsuki, Y. Irokawa, Y. Nakano, M. Sumiya, π-Conjugated polymer/GaN Schottky solar Cells. Sol. Energy Mater. Sol. Cells 95, 284 (2011)

    Article  Google Scholar 

  19. S. Lin, B.P. Zhang, S.W. Zeng, X.M. Cai, J.Y. Zhang, S.X. Wu, A.K. Ling, G.E. Weng, Preparation and properties of Ni/InGaN/GaN Schottky barrier photovoltaic cells. Solid-State Electron. 63, 105 (2011)

    Article  ADS  Google Scholar 

  20. D.J. Chen, Y. Huang, B. Liu, Z.L. Xie, R. Zhang, Y.D. Zheng, Y. Wei, V. Narayanamurti, High-quality Schottky contacts to n-InGaN alloys prepared for photovoltaic devices. J. App. Phys. 105, 063714 (2009)

    Article  ADS  Google Scholar 

  21. J.X. Jun, C.D. Jun, L. Bin, X.Z. Li, J.R. Lain, Z. Rung, Z.Y. Dou, Au/Pt/InGaN/GaN heterostructure Schottky prototype solar cell. Chin. Phys. Lett. 9, 098102 (2009)

    Article  Google Scholar 

  22. X. Sun, W.B. Liu, D.S. Jiang, Z.S. Liu, S. Zhang, L.L. Wang, H. Wang, J.J. Zhu, L.H. Duan, Y.T. Wang, D.G. Zhao, S.M. Zhang, H. Yang, Photoelectric characteristics of metal/InGaN/GaN heterojunction structure. J. Phys. D Appl. Phys. 41, 165108 (2008)

    Article  ADS  Google Scholar 

  23. P. Mahala, S.K. Behura, A. Ray, Analytical estimate of open-circuit voltage of a Schottky-barrier solar cell under high level injection. J. Nano Electron. Phys. 3, 979 (2011)

    Google Scholar 

  24. P. Mahala, S.K. Behura, A. Ray, C. Dhanavantri, O. Jani, Metal/InGaN Schottky junction solar cells-an analytical approach. Appl. Phys. A 118, 1459 (2015)

    Article  ADS  Google Scholar 

  25. K.Y. Lai, G.J. Lin, C.Y. Chen, Y.L. Lai, J.H. He, Origin of hot carriers in InGaN-based quantum-well solar cells. IEEE Electron Device Lett. 32, 179 (2011)

    Article  ADS  Google Scholar 

  26. R.M. Farrell, C.J. Neufeld, S.C. Cruz, J.R. Lang, M. Iza, S. Keller, S. Nakamura, S.P.D. Baars, U.K. Mishra, J.S. Speck, High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm. Appl. Phys. Lett. 98, 201107 (2011)

    Article  ADS  Google Scholar 

  27. R. Dahal, J. Li, K. Aryal, J.Y. Lin, H.X. Jiang, InGaN/GaN multiple quantum well concentrator solar cells. Appl. Phys. Lett. 97, 073115 (2010)

    Article  ADS  Google Scholar 

  28. M.J. Jeng, Y.L. Lee, L.B. Chang, Temperature dependences of InxGa1−xN multiple quantum well solar cells. J. Phys. D Appl. Phys. 42, 105101 (2009)

    Article  ADS  Google Scholar 

  29. K.Y. Lai, G.J. Lin, Y.-R. Wu, M.-L. Tsai, J.H. He, Efficiency dip observed with InGaN-based multiple quantum well solar cells. Opt. Express 22, A1753 (2014)

    Article  ADS  Google Scholar 

  30. J.Q. Liu, Y.X. Qiu, J.F. Wang, K. Xu, H. Yang, Analysis of modified Williamson–Hall plots on GaN layers. Chin. Phys. Lett. 28, 016101 (2011)

    Article  ADS  Google Scholar 

  31. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154 (2012)

    Article  ADS  Google Scholar 

  32. M. Brötzmann, U. Vetter, H. Hofsäss, BN/ZnO heterojunction diodes with apparently giant ideality factors. J. Appl. Phys. 106, 063704 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pramila Mahala or Chenna Dhanavantri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahala, P., Singh, S., Pal, S. et al. Fabrication and characterization of GaN/InGaN MQW solar cells. Appl. Phys. A 122, 639 (2016). https://doi.org/10.1007/s00339-016-0146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0146-0

Keywords

Navigation