Skip to main content
Log in

UV sensing of twinned ZnO–PANI composite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel twinned ZnO–polyaniline (PANI) composite was fabricated through a chemical method using zinc acetate hexahydrate and ammonium hydroxide with the addition of 15 wt%PANI. Pure ZnO and composite were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman spectroscopy, and UV–visible spectrophotometer. FESEM images revealed that ZnO–PANI composite has a twinned rod microstructure, with homogeneous size distribution; the average length of rods becomes shorter, while the average diameter becomes larger with the addition of PANI. XRD analysis confirms the formation of the hexagonal wurtzite ZnO structure. With the addition of PANI, the original structure of ZnO remains stable. Raman peaks were observed, which were associated with the interfacial interactions between ZnO and PANI molecular chains. The use of porous Si substrates is found to be very beneficial to favor the bonding strength between the as-grown composite and Si substrate. The optical bandgap estimated from absorbance decreases from 3.22 to 3.05 eV. The fabricated photodetector based on the newly synthesized twinned rod-like ZnO–PANI composite revealed high gain of 5.23 and better sensitivity than pure ZnO. This enhancement can be attributed to the presence of PANI, which absorbs more light in the visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Alam et al., Optical and electrical studies of polyaniline/ZnO nanocomposite. J. Nanomater. 2013, 147 (2013)

    Google Scholar 

  2. J. Zhang et al., Polypyrrole-coated SnO2 hollow spheres and their application for ammonia sensor. J. Phys. Chem. C 113(5), 1662–1665 (2009)

    Article  Google Scholar 

  3. K. Su et al., First preparations and characterization of conductive polymer crystalline nanoneedles, in Macromolecular Symposia (Wiley Online Library, 2009)

  4. W. Liu et al., Layer-by-layer synthesis of metal-containing conducting polymers: caged metal centers for interlayer charge transport. J. Am. Chem. Soc. 132(34), 11844–11846 (2010)

    Article  Google Scholar 

  5. C.M. Hangarter et al., Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. J. Mater. Chem. 20(16), 3131–3140 (2010)

    Article  Google Scholar 

  6. M.G. Han et al., Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth. Met. 126(1), 53–60 (2002)

    Article  Google Scholar 

  7. D. Sharma, B. Kaith, J. Rajput, Single step in situ synthesis and optical properties of polyaniline/ZnO nanocomposites. Sci. World J. 2014, 1–13 (2014)

    Google Scholar 

  8. X. Sui, C. Shao, Y. Liu, White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning. Appl. Phys. Lett. 87(11), 113115 (2005)

    Article  ADS  Google Scholar 

  9. B.K. Sharma et al., Synthesis and characterization of polyaniline–ZnO composite and its dielectric behavior. Synth. Met. 159(5), 391–395 (2009)

    Article  Google Scholar 

  10. J. Zhang, E. Manias, C.A. Wilkie, Polymerically modified layered silicates: an effective route to nanocomposites. J. Nanosci. Nanotechnol. 8(4), 1597–1615 (2008)

    Article  Google Scholar 

  11. S. Mallakpour, M. Dinari, Fabrication of polyimide/titania nanocomposites containing benzimidazole side groups via sol–gel process. Prog. Org. Coat. 75(4), 373–378 (2012)

    Article  Google Scholar 

  12. D. Zhang et al., Facile preparation, characterization, and highly effective microwave absorption performance of CNTs/Fe3O4/PANI nanocomposites. J. Nanomater. 2013, 134 (2013)

    Google Scholar 

  13. M. Dhingra et al., Polyaniline mediated enhancement in band gap emission of zinc oxide. Compos. B Eng. 45(1), 1515–1520 (2013)

    Article  Google Scholar 

  14. A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci.: Mater. Int. 22(4), 273–280 (2012)

    Article  Google Scholar 

  15. J. Huang et al., Gas sensing performance of polyaniline/ZnO organic–inorganic hybrids for detecting VOCs at low temperature. J. Nat. Gas Chem. 20(5), 515–519 (2011)

    Article  Google Scholar 

  16. S. Patil et al., Fabrication of polyaniline–ZnO nanocomposite gas sensor. Sens. Transducers 134(11), 120–131 (2011)

    Google Scholar 

  17. F. Ahmed et al., Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method. Thin Solid Films 519(23), 8375–8378 (2011)

    Article  ADS  Google Scholar 

  18. M. Rajabi, R. Dariani, A.I. Zad, UV photodetection of laterally connected ZnO rods grown on porous silicon substrate. Sens. Actuators A 180, 11–14 (2012)

    Article  Google Scholar 

  19. D. Dimova, Application of stain etched porous silicon in solar cells and light emitting diodes, in Functional Properties of Nanostructured Materials (Springer, New York, 2006), pp. 323–332

  20. A. Uzum et al., Water soluble aluminum paste using polyvinyl alcohol for silicon solar cells. Int. J. Photoenergy 2015, 1–6 (2015)

    Article  Google Scholar 

  21. J.M. Hancock, Formation and analysis of zinc oxide nanoparticles and zinc oxide hexagonal prisms and optical analysis of cadmium selenide nanoparticles. Brigham Young University 3613334, 104 (2013)

  22. M. Öner et al., Control of ZnO crystallization by a PEO-b-PMAA diblock copolymer. Chem. Mater. 10(2), 460–463 (1998)

    Article  Google Scholar 

  23. T. Thirugnanam, Effect of polymers (PEG and PVP) on sol–gel synthesis of microsized zinc oxide. J. Nanomater. 2013, 43 (2013)

    Article  Google Scholar 

  24. X.L. Zhang et al., Fabrication of hierarchical ZnO nanostructures via a surfactant-directed process. Cryst. Growth Des. 9(6), 2906–2910 (2009)

    Article  Google Scholar 

  25. X. Hu et al., Polyethylenimine-guided self-twin zinc oxide nanoarray assemblies. Cryst. Growth Des. 9(8), 3598–3602 (2009)

    Article  Google Scholar 

  26. C. Xu et al., Nanostructured single-crystalline twin disks of zinc oxide. Cryst. Growth Des. 7(3), 541–544 (2007)

    Article  Google Scholar 

  27. L. Tan et al., Growth of “waist” ZnO twin rods through hydrothermal synthesis. J. Nanosci. Nanotechnol. 14(4), 3233–3238 (2014)

    Article  Google Scholar 

  28. H. Jiang et al., Self-assembly of solid or tubular ZnO rods into twinning microprisms via a hydrothermal route. J. Alloys Compd. 478(1), 550–553 (2009)

    Article  Google Scholar 

  29. H.S. Al-Salman, M. Abdullah, Fabrication and characterization of ZnO thin film for hydrogen gas sensing prepared by RF-magnetron sputtering. Measurement 46(5), 1698–1703 (2013)

    Article  Google Scholar 

  30. S.M. Mohammad et al., Fabrication of low cost UV photo detector using ZnO nanorods grown onto nylon substrate. J. Mater. Sci.: Mater. Electron. 26(3), 1322–1331 (2015)

    Google Scholar 

  31. R. Yousefi, A. Zak, Growth and characterization of ZnO nanowires grown on the Si (111) and Si (100) substrates: optical properties and biaxial stress of nanowires. Mater. Sci. Semicond. Process. 14(2), 170–174 (2011)

    Article  Google Scholar 

  32. T.C. Damen, S. Porto, B. Tell, Raman effect in zinc oxide. Phys. Rev. 142(2), 570 (1966)

    Article  ADS  Google Scholar 

  33. M.-I. Boyer et al., Vibrational analysis of polyaniline: a model compound approach. J. Phys. Chem. B 102(38), 7382–7392 (1998)

    Article  Google Scholar 

  34. H.S. Al-Salman, M. Abdullah, Effect of Co-doping on the structure and optical properties of ZnO nanostructure prepared by RF-magnetron sputtering. Superlattices Microstruct. 60, 349–357 (2013)

    Article  ADS  Google Scholar 

  35. S.M. Mohammad et al., Fabrication of low cost UV photo detector using ZnO nanorods grown onto nylon substrate. J. Mater. Sci.: Mater. Electron. 26(3), 1322–1331 (2015)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Institute of Nano Optoelectronics Research and Technology Laboratory (INOR) of the School of Physics, Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rawnaq A. Talib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talib, R.A., Abdullah, M.J., Ahmed, N.M. et al. UV sensing of twinned ZnO–PANI composite. Appl. Phys. A 122, 540 (2016). https://doi.org/10.1007/s00339-016-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0060-5

Keywords

Navigation