Skip to main content
Log in

Structural, morphological and optical studies of ripple-structured ZnO thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ripple-structured ZnO thin films were prepared on Si (100) substrate by sol–gel spin-coating method with different heating rates during preheating process and finally sintered at 500 °C for 2 h in ambient condition. The structural, morphological and photoluminescence (PL) properties of the nanostructured films were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and PL spectroscopy. XRD analysis revealed that films have hexagonal wurtzite structure and texture coefficient increases along (002) plane with preheating rate. The faster heating rate produced higher crystallization and larger average crystallite size. The AFM and SEM images indicate that all the films have uniformly distributed ripple structure with skeletal branches. The number of ripples increases, while the rms roughness, amplitude and correlation length of the ripple structure decrease with preheating rates. The PL spectra show the presence of different defects in the structure. The ultraviolet emission improved with the heating rate which indicates its better crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.C. Lim, W.H. Shim, K. Kim, H.O. Seo, J. Lim, Y. Jeong, Y.D. Kim, K.H. Lee, Spontaneous formation of nanoripples on the surface of the ZnO thin films as hole-blocking layer of inverted organic solar cells. Sol. Energy Mater. Sol. Cells 95, 3036–3040 (2011)

    Article  Google Scholar 

  2. W. Song, S.Y. Kwon, S. Myung, M.W. Jung, S.J. Kim, B.K. Min, M. Kang, S.H. Kim, J. Lim, K.S. An, High mobility ambipolar ZnO–graphene hybrid thin film transistors. Sci. Rep. 4, 4064 (2014)

    ADS  Google Scholar 

  3. B.R. Lee, E.D. Jung, J.S. Park, Y.S. Nam, S.H. Min, B. Kim, K. Lee, J. Jeong, R.H. Friend, J. Kim, S.O. Kim, M.H. Song, Highly efficient polymer light-emitting diode using surface modifications of ZnO layer. Nat. Commun. 5, 4840 (2014)

    Article  ADS  Google Scholar 

  4. S. Jeong, B. Kim, B. Lee, Photoluminescence dependence of ZnO films grown on Si(100) by radio frequency magnetron sputtering on the growth ambient. Appl. Phys. Lett. 82, 2625–2627 (2003)

    Article  ADS  Google Scholar 

  5. M.G. Tsoutsovua, C.N. Panagopoulus, D. Papadimitriou, I. Fasaki, M. Kompitsas, ZnO thin films prepared by pulsed laser deposition. Mater. Sci. Eng. B 176, 480–483 (2011)

    Article  Google Scholar 

  6. V. Kumar, N. Singh, R.M. Mehra, A. Kapoor, L.P. Purohit, H.C. Swart, Role of film thickness on the properties of ZnO thin films grown by sol–gel method. Thin Solid Films 539, 161–165 (2013)

    Article  ADS  Google Scholar 

  7. M. Purica, E. Budianu, E. Rusu, M. Danila, R. Gavrila, Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD). Thin Solid Films 403, 485–488 (2002)

    Article  ADS  Google Scholar 

  8. M. Dutta, S. Mridha, D. Basak, Effect of sol concentration on the properties of ZnO thin film prepared by sol–gel method. Appl. Surf. Sci. 254, 2743–2747 (2008)

    Article  ADS  Google Scholar 

  9. Y. Li, L. Xu, X. Li, X. Shen, A. Wang, Effect of aging time of ZnO sol on the structural and optical properties of ZnO thin films prepared by sol–gel method. Appl. Surf. Sci. 256, 4543–4547 (2010)

    Article  ADS  Google Scholar 

  10. D. Raoufi, T. Raoufi, The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films. Appl. Surf. Sci. 255, 5812–5817 (2009)

    Article  ADS  Google Scholar 

  11. S.J. Kwon, J.H. Park, J.G. Park, Wrinkling of sol–gel-derived thin film. Phys. Rev. E 71, 011604 (2005)

    Article  ADS  Google Scholar 

  12. S. Cho, K. Kim, J. Heo, J.Y. Lee, G. Cha, B.Y. Seo, Y.D. Kim, Y.S. Kim, S. Choi, D.C. Lim, Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells. Sci. Rep. 4, 4306 (2014)

    ADS  Google Scholar 

  13. K. Yuan, L. Chen, F. Lee, Y. Chen, Nanostructured hybrid ZnO@CdS nanowalls grown in situ for inverted polymer solar cells. J. Mater. Chem. C 2, 1018–1027 (2014)

    Article  Google Scholar 

  14. H. Park, D. Lim, K. Kim, S. Jang, Performance optimization of low-temperature-annealed solution-processable ZnO buffer layer for inverted polymer solar cells. J. Mater. Chem. A. 1, 6327–6334 (2013)

    Article  Google Scholar 

  15. S. Schumann, R. Campo, B. Illy, A. Cruickshank, M.A. McLachlan, M.P. Ryan, D.J. Riley, D.W. McComb, T.S. Jones, Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers. J. Mater. Chem. 21, 2381–2386 (2011)

    Article  Google Scholar 

  16. M.S. Kim, K.G. Yim, D. Lee, J.S. Kim, J.S. Kim, J. Son, J. Leem, Effect of cooling rate and post heat treatment on properties of ZnO thin films deposited by sol–gel method. Appl. Surf. Sci. 257, 9019–9023 (2011)

    Article  ADS  Google Scholar 

  17. T.Q. Liu, O. Sakurai, N. Mizutani, M. Kato, Preparation of fine ZnO nanoparticles by the spray pyrolysis method using ultrasonic atomization techniques. J. Mater. Sci. 21, 3698–3702 (1986)

    Article  ADS  Google Scholar 

  18. I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, WSXM: software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007)

    Article  ADS  Google Scholar 

  19. M. Kumar, A. Kumar, A.C. Abhyankar, Influence of texture coefficient on surface morphology and sensing properties of the W-doped nanocrystalline tin oxide thin films. ACS Appl. Mater. Interfaces (2015). doi:10.1021/am507397z

  20. C. Tsay, K. Fan, C. Chen, J. Wu, C. Lei, Effect of preheating process on crystallization and optical properties of the sol–gel derived ZnO semiconductor thin films. J. Electroceram. 26, 23–27 (2011)

    Article  Google Scholar 

  21. D. Bao, H. Gu, A. Kuang, Sol–gel derived c-axis oriented ZnO thin films. Thin Solid Films 312, 37–39 (1998)

    Article  ADS  Google Scholar 

  22. R. Ghosh, D. Basak, S. Fuzihara, Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J. Appl. Phys. 96, 2689 (2004)

    Article  ADS  Google Scholar 

  23. H.C. Ong, A.X.E. Zhu, G.T. Du, Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films. Appl. Phys. Lett. 80, 941–943 (2002)

    Article  ADS  Google Scholar 

  24. S.H. Hu, Y.C. Lee, J.W. Lee, J.C. Huang, J.L. Shen, W. Water, The structural and optical properties of ZnO/Si thin films by RTA treatment. Appl. Surf. Sci. 254, 1578–1582 (2008)

    Article  ADS  Google Scholar 

  25. S.S. Sengupta, S.M. Park, D.A. Payne, L.H. Allen, Origins and evolution of stress development in sol–gel derived thin layers and multideposited coatings of lead titanate. J. Appl. Phys. 83, 2292–2296 (1998)

    Article  ADS  Google Scholar 

  26. R. Tsuchikawa, H. Ahn, S. Yao, K.D. Belfield, M. Ishigami, Photosensitization of carbon nanotubes using dye aggregates. J. Phys. Condens. Matter 23, 202204 (2011)

    Article  ADS  Google Scholar 

  27. D. Raoufi, A. Kiasatpour, H.R. Fallah, A.S.H. Rozatian, Surface characterization and microstructure of ITO thin films at different annealing temperatures. Appl. Surf. Sci. 253, 9085–9090 (2007)

    Article  ADS  Google Scholar 

  28. G.W. Scherer, Sintering of sol–gel films. J. Sol–Gel Sci. Technol. 8(1), 353–363 (1997)

    Google Scholar 

  29. A. Monemdjou, F.E. Ghodsi, J. Mazloom, The effects of surface morphology and electrical properties of nanostructured AZO thin films: fractal and phase imaging analysis. Superlattice Microstruct. 74, 19–33 (2014)

    Article  ADS  Google Scholar 

  30. D. Das, P. Mondal, Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering. RSC Adv. 4, 35735–37743 (2014)

    Article  Google Scholar 

  31. R.K. Biroju, P.K. Giri, S. Dhara, K. Imakita, M. Fujii, Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties. ACS Appl. Mater. Interfaces 6, 377–387 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Kumar Navin is thankful to TEQIP-II for financial assistance and to the Director, MANIT, for providing infrastructure to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajnish Kurchania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navin, K., Kurchania, R. Structural, morphological and optical studies of ripple-structured ZnO thin films. Appl. Phys. A 121, 1155–1161 (2015). https://doi.org/10.1007/s00339-015-9481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9481-9

Keywords

Navigation