Skip to main content
Log in

Growth of ZnO nanostructures by femtosecond laser irradiation of polycrystalline targets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The formation of LIPSS upon irradiation with ultrashort laser pulses on the surface of polycrystalline ZnO samples and the potential use of irradiated areas as growth patterns for the production of highly ordered nanostructures upon redeposition have been studied. For this purpose, we have performed different sets of irradiation experiments including static irradiation experiments at low and high repetition rates, as well as scanned beam experiments at high repetition rate, this later in order to generate relatively large template regions for nanostructure growth by redeposition. In all cases, LIPSS formation has been achieved in the ZnO polycrystalline surface. Under appropriate irradiation conditions, the material is redeposited rendering a high density of nanostructures with high aspect ratios and good crystal quality. Given the special luminescent properties and applications of ZnO, particular attention has been paid to the luminescence properties after irradiation and after post-irradiation thermal treatments. The observed evolution has been correlated with evolution of point defects in the treated surfaces. Thermal treatments cause significant changes in both the topography and the cathodoluminescent emission, such as the development of laminar structures, the emergence of nucleation centers and the recovery of ultraviolet emission previously quenched as a consequence of irradiation. Interestingly, LIPSS remain after the luminescent recovery by thermal annealing, opening the possibility to control both luminescence properties and grain size while maintaining an ordered structure with a high effective surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, J. Bonse, J. Appl. Phys. 105, 034908 (2009)

    Article  ADS  Google Scholar 

  2. W. Liang, F. Chen, H. Bian, Q. Yang, H. Liu, X. Wang, J. Si, X. Hou, Opt. Commun. 283, 2385 (2010)

    Article  ADS  Google Scholar 

  3. M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, Opt. Express 16, 19354 (2008)

    Article  ADS  Google Scholar 

  4. X.D. Guo, R.X. Li, Y. Hang, Z.Z. Xu, B.K. Yu, H.L. Ma, X.W. Sun, Mater. Lett. 61, 4583 (2007)

    Article  Google Scholar 

  5. M. Birnbaum, J. Appl. Phys. 36, 3688 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  6. J.E. Sipe, J.F. Young, J.S. Preston, H. van Driel, Phys. Rev. B 27, 1141 (1983)

    Article  ADS  Google Scholar 

  7. J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe, Phys. Rev. B 27, 1155 (1983)

    Article  ADS  Google Scholar 

  8. H.M. van Driel, J.E. Sipe, J.F. Young, Phys. Rev. Lett. 49, 1955 (1982)

    Article  ADS  Google Scholar 

  9. X.D. Guo, R.X. Li, Y. Hang, Z.Z. Xu, B.K. Yu, H.L. Ma, B. Lu, X.W. Sun, Mater. Lett. 62, 1769 (2008)

    Article  Google Scholar 

  10. Z. Min-Jian, G. Guang-Lei, Y. Jun-Yi, M. Ning-Hua, Y. Guo, G. Xiao-Dong, L. Ru-Xin, M. Hong-Liang, Chin. Phys. B 17, 1223 (2008)

    Article  Google Scholar 

  11. X.D. Guo, R.X. Li, Y. Hang, Z.Z. Xu, B.K. Yu, Y. Dai, B. Lu, X.W. Sun, Appl. Phys. A 94, 423 (2009)

    Article  ADS  Google Scholar 

  12. D. von der Linde, K. Sokolowski-Tinten, J. Bialkowski, Appl. Surf. Sci. 109/110, 1 (1997)

    Article  ADS  Google Scholar 

  13. G.A. Martsinovskiĭ, G.D. Shandybina, D.S. Smirnov, S.V. Zabotnov, L.A. Golovan’, VYu. Timoshenko, P.K. Kashkarov, Opt. Spectrosc. 105, 67 (2008)

    Article  ADS  Google Scholar 

  14. J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Appl. Surf. Sci. 197–198, 891 (2002)

    Article  Google Scholar 

  15. J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2005)

    Article  ADS  Google Scholar 

  16. S. Sakabe, M. Hashida, S. Tokita, S. Namba, K. Okamuro, Phys. Rev. B 79, 033409 (2009)

    Article  ADS  Google Scholar 

  17. J.P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, F. Pigeon, J. Appl. Phys. 111, 024902 (2012)

    Article  ADS  Google Scholar 

  18. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, F.Ö. Ilday, Nat. Photonics 7, 897 (2013)

    Article  ADS  Google Scholar 

  19. A. Ruiz de la Cruz, R. Lahoz, J. Siegel, G.F. de la Fuente, J. Solis, Opt. Lett. 39, 2491 (2014)

    Article  ADS  Google Scholar 

  20. L. Ran, S. Qu, Appl. Surf. Sci. 256, 2315 (2010)

    Article  ADS  Google Scholar 

  21. R. Wagner, J. Gottmann, A. Horn, E.W. Kreutz, Appl. Surf. Sci. 252, 8576 (2006)

    Article  ADS  Google Scholar 

  22. O. Varlamova, F. Costache, J. Reif, M. Bestehorn, Appl. Surf. Sci. 252, 4702 (2006)

    Article  ADS  Google Scholar 

  23. P. Fernández, N. de Diego, J. del Rio, J. Llopis, J. Phys.: Condens. Matter 1, 4853 (1989)

    ADS  Google Scholar 

  24. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, J. Solis, J. Opt. Soc. Am. B: Opt. Phys. 27, 1065 (2010)

    Article  ADS  Google Scholar 

  25. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  26. M. Willander, O. Nur, J. Rana Sadaf, M. Israr Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Materials 3, 2643 (2010)

    Article  ADS  Google Scholar 

  27. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  28. O. Lupan, V.V. Ursaki, G. Chai, L. Chow, G.A. Emelchenko, I.M. Tiginyanu, A.N. Gruzintsev, A.N. Redkin, Sens. Actuators B 144, 56 (2010)

    Article  Google Scholar 

  29. J. Grym, P. Fernández, J. Piqueras, Nanotechnology 16, 931 (2005)

    Article  ADS  Google Scholar 

  30. P. Fernández, J. Llopis, J. Piqueras, Phys. Status Solidi A 107, 197 (1988)

    Article  ADS  Google Scholar 

  31. M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, K.J. Choi, J.H. Lee, S.H. Hong, Appl. Phys. Lett. 93, 263103 (2008)

    Article  ADS  Google Scholar 

  32. B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films 366, 107 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Spanish Ministry Economy and Competitiveness (TEC2011-22422, TEC2014-52642-C2-1-R, MAT 2012-31959 and CSD2009-00013). G. Escalante acknowledges CONACYT for the postdoc grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fernández.

Additional information

Y. K. Ryu is formerly affiliated with Depto. de Física de Materiales, Facultad de Físicas, Univ. Complutense, Madrid, Spain

A. Ruíz de la Cruz and D. Puerto were formerly affiliated with Laser Processing Group, Instituto de Óptica, CSIC, Serrano 121, Madrid, Spain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escalante, G., Ryu, Y.K., de la Cruz, A.R. et al. Growth of ZnO nanostructures by femtosecond laser irradiation of polycrystalline targets. Appl. Phys. A 121, 607–617 (2015). https://doi.org/10.1007/s00339-015-9441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9441-4

Keywords

Navigation