Skip to main content
Log in

Effect of illumination on linear and nonlinear optical parameters of Ga5Se95 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ga5Se95 films were prepared by using thermal evaporation technique. X-ray showed that the powder samples as well as thin-film samples are crystalline in nature. The optical constants (refractive index n and rad absorption index k) of Ga5Se95 films were calculated using Murmann’s exact method. The photoinduced red shift of the optical gap (photodarkening) appeared in Ga5Se95 films after illumination. The indirect energy gap was decreased from 1.75 eV for the as-deposited films to 1.65 eV for illuminated thin films 1 h. The concentration of color centers was calculated by using Gaussian fitting for peaks of the absorption coefficient (α) and was found to increase from 5.6 × 1024 to 6.2 × 1024 cm−3 with illumination time. The effect of illumination on the nonlinear optical susceptibility (χ (3)) and nonlinear refractive index (n 2) is estimated using empirical relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.A. Zingaro, W.C. Cooper (eds.), Selenium (Van Nostrand Reinhold, New York, 1974)

    Google Scholar 

  2. L.I. Berger, Semiconductor Materials (CRC Press, Boca Raton, 1997)

    Google Scholar 

  3. Z.H. Lin, C.R.C. Wang, Mater. Chem. Phys. 92, 591 (2005)

    Article  Google Scholar 

  4. B. Gates, B. Mayers, B. Cattle, Y. Xia, Adv. Funct. Mater. 12, 219 (2002)

    Article  Google Scholar 

  5. B.T. Mayers, K. Liu, D. Sunderland, Y. Xia, Chem. Mater. 15, 3852 (2003)

    Article  Google Scholar 

  6. J.Y. Shim, S.W. Park, H.K. Baik, Thin Solid Films 292, 31 (1997)

    Article  ADS  Google Scholar 

  7. M. Ilyas, M. Zulfequar, M. Husain, J. Mod. Opt. 47, 663 (2000)

    ADS  Google Scholar 

  8. J. Dresner, G.B. Stringfellow, J. Phys. Chem. Solids 29, 303 (1968)

    Article  ADS  Google Scholar 

  9. V.V. Poborchii, Appl. Phys. Lett. 72, 1167 (1998)

    Article  ADS  Google Scholar 

  10. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, London, 1974), p. 195

    Book  Google Scholar 

  11. G.A. Adebayo, B.C. Anusionwu, J. Phys. Chem. Solids 71, 1690 (2010)

    Article  ADS  Google Scholar 

  12. N.C. Fernelius, Prog. Cryst. Growth Charact. 28, 275 (1994)

    Article  Google Scholar 

  13. S. Brodin, I.W. Blonskii, Exciton Processes in Layer Crystals (Naukova Dumka, Kiev, 1986)

    Google Scholar 

  14. K. Ueno, N. Takeda, K. Sasaki, A. Koma, Appl. Surf. Sci. 113, 38 (1997)

    Article  ADS  Google Scholar 

  15. B.O. Seraphin (ed.), Solar Energy Conversion, vol. 31 (Springer, Berlin, 1979), p. 115

    Book  Google Scholar 

  16. R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de-Groot, A. Wold, Phys. Rev. B 35, 6195 (1987)

    Article  ADS  Google Scholar 

  17. T. Onai, Y. Nagai, H. Dezaki, Y. Oyama, J. Cryst. Growth 380, 18 (2013)

    Article  ADS  Google Scholar 

  18. G. Voevodin, O.V. Voevodina, S.A. Bereznaya, Z.V. Korotchenko, A.N. Morozov, S.Y. Sarkisov, N.C. Fernelius, J.T. Goldstein, Opt. Mater. 26, 495 (2004)

    Article  ADS  Google Scholar 

  19. P. Nemec, M. Frumar, J. Jedelsky, M. Jelinek, J. Lancok, I. Gregora, J. Non-cryst. Solids 299, 1013 (2002)

    Article  ADS  Google Scholar 

  20. K. Petkov, P.J.S. Ewen, J. Non-cryst. Solids 249, 150 (1999)

    Article  ADS  Google Scholar 

  21. J. Sasai, K. Hiro, J. Non-cryst. Solids 290, 49 (2001)

    Article  ADS  Google Scholar 

  22. G.I. Stegeman, W.E. Torruellas, Philos. Trans. R. Soc. London Ser. A 354, 745 (1996)

    Article  ADS  Google Scholar 

  23. M.M. Nazarov, SYu. Sarkisov, A.P. Shkurinov, O.P. Tolbanov, Appl. Phys. Lett. 99, 081105 (2011)

    Article  ADS  Google Scholar 

  24. N.B. Singh, D.R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F.K. Hopkins, D. Zelmon, Prog. Cryst. Growth 37, 47 (1998)

    Article  Google Scholar 

  25. A. Segura, J. Bourier, M.V. Andres, F.J. Manjon, V. Munoz, Phys. Rev. B 56, 4075 (1997)

    Article  ADS  Google Scholar 

  26. Y. Ni, W. Haixin, C. Huang, M. Mao, Z. Wang, X. Cheng, J. Cryst. Growth 381, 10 (2013)

    Article  ADS  Google Scholar 

  27. M.M. Abdullah, G. Bhagavannarayana, M.A. Wahab, Growth and characterization of GaSe single crystal. J. Cryst. Growth 312, 1534 (2010)

    Article  ADS  Google Scholar 

  28. N.B. Singh, R. Narayanan, A.X. Zhao, Bridgman growth of GaSe crystals for nonlinear optical applications. Mater. Sci. Eng. B 49, 243 (1997)

    Article  Google Scholar 

  29. N.N. Kolesnikov, E.B. Borisenko, D.N. Borisenko, Influence of growth conditions on micro structure and properties of GaSe crystals. J. Cryst. Growth 300, 294 (2007)

    Article  ADS  Google Scholar 

  30. Y. Oyamaa, T. Tanabe, F. Sato, J. Cryst. Growth 310, 1923 (2008)

    Article  ADS  Google Scholar 

  31. K.S. Sangunni, J. Indian Inst. Sci. 91, 295 (2011)

    Google Scholar 

  32. M.M. El-Nahass, I.T. Zedan, F.S. Abu-Samaha, Opt. Laser Technol. 44, 621 (2012)

    Article  ADS  Google Scholar 

  33. H. Murmann, Z. Phys. 101, 643 (1936)

    Article  ADS  Google Scholar 

  34. S.H. Wemple, M. DiDomenico Jr, Phys. Rev. B 3, 1338 (1971)

    Article  ADS  Google Scholar 

  35. G.A. Kumar, J. Thomas, N. George, B.A. Kumar, P. Radhkrishnan, V.P.N. Nampoori, Phys. Chem. Glasses 41, 89 (2000)

    Google Scholar 

  36. S.K. Deb, Philos. Mag. 27, 801 (1973)

    Article  ADS  Google Scholar 

  37. J. Bardeen, F.J. Slatt, L. Hall, Photoconductivity Conference (Wiley, New York, 1965), p. 146

    Google Scholar 

  38. L. Tichy, H. Ticha, P. Nagels, R. Mertens, J. Optoelectron. Adv. Mater. 4, 785 (2002)

    Google Scholar 

  39. S. Gupta, F.I. Mustafa, G.S.S. Saini, N. Goyal, S.K. Tripathi, International conference on advances in condensed and nano materials (ICACNM-2011). AIP Conf. Proc. 1393, 245 (2011)

    Article  ADS  Google Scholar 

  40. A.A. Bahishti, M.A. Majeed Khan, B.S. Patel, F.S. Al-Hazmi, M. Zulfequar, J. Non-cryst. Solids 355, 2314 (2009)

    Article  ADS  Google Scholar 

  41. F.A. Al-Agel, Opt. Laser Technol. 54, 208 (2013)

    Article  ADS  Google Scholar 

  42. M.M. Hafiz, A.A. Othman, M.M. El-Nahass, A.T. Al-Motasem, Radiat. Eff. Defects Solids 162, 669 (2007)

    Article  Google Scholar 

  43. L. Tichy, H. Ticha, P. Nagels, R. Callaerts, J. Non-cryst. Solids 240, 177 (1998)

    Article  ADS  Google Scholar 

  44. H. Tichá, L. Tichý, J. Optoelectron. Adv. Mater. 4, 381 (2002)

    Google Scholar 

  45. L. Tichy, H. Ticha, P. Nagels, R. Callaerts, R. Mertens, M. Vlcek, Mater. Lett. 39, 122 (1999)

    Article  Google Scholar 

  46. J.J. Wyne, Phys. Rev. 178, 1295 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Zedan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zedan, I.T., El-Nahass, M.M. Effect of illumination on linear and nonlinear optical parameters of Ga5Se95 thin films. Appl. Phys. A 120, 983–989 (2015). https://doi.org/10.1007/s00339-015-9266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9266-1

Keywords

Navigation