Skip to main content
Log in

Scalable polymer-based ferrite composites with matching permeability and permittivity for high-frequency applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Materials with relatively high and equal permeability and permittivity are promising for applications in telecommunications, but so far, few practical candidates have been identified. In this work, functional composites consisting of epoxy resin and Ni0.4Zn0.6Fe2O4 ferrite particles have been fabricated by a scalable and flexible casting route. It has been experimentally demonstrated that at frequencies in the 100 MHz range, the composite with ferrite loading of 53 vol% can achieve broadband impedance matching to free space with a refractive index of approximately 6, giving <0.03 % reflection and over 96 % transmission of incident radiation. These results indicate a more flexible route to the fabrication of impedance-matched materials for antenna miniaturization, which has been demonstrated by the casting of the impedance-matched composite into hemispheres suitable for electrically small antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.B. Kong, Z.W. Li, G.Q. Lin, Y.B. Gan, J. Am. Ceram. Soc. 90, 3106 (2007)

    Article  Google Scholar 

  2. M.L.S. Teo, L.B. Kong, Z.W. Li, G.Q. Lin, Y.B. Gan, J. Alloy. Compd. 459, 557 (2008)

    Article  Google Scholar 

  3. W. Yu, R. Mittra, D.H. Werner, IEEE Microw. Guided Wave Lett. 9, 496 (1999)

    Article  Google Scholar 

  4. W. Yu, D.H. Werner, R. Mittra, IEEE Microw. Guided Wave Lett. 10, 128 (2000)

    Article  Google Scholar 

  5. A. Thakur, P. Thakur, J.-H. Hsu, Scripta Mater. 64, 205 (2011)

    Article  Google Scholar 

  6. A. Thakur, A. Chevalier, J.-L. Mattei, P. Queffélec, J. Appl. Phys. 108, 014301 (2010)

    Article  ADS  Google Scholar 

  7. D. Souriou, J.-L. Mattei, A. Chevalier, P. Queffélec, J. Appl. Phys. 107, 09A518 (2010)

    Article  Google Scholar 

  8. H. Su, X. Tang, H. Zhang, Y. Jing, F. Bai, Z. Zhong, J. Appl. Phys. 113, 17B301 (2013)

    Google Scholar 

  9. L.B. Kong, Z.W. Li, G.Q. Lin, Y.B. Gan, IEEE Trans. Magn. 43, 6 (2007)

    Article  ADS  Google Scholar 

  10. Q. He, T. Yuan, X. Zhang, X. Yan, J. Guo, D. Ding, M.A. Khan, D.P. Young, A. Khasanov, Z. Luo, J. Liu, T.D. Shen, X. Liu, S. Wei, Z. Guo, J. Phys. Chem. C 118, 24784 (2014)

    Article  Google Scholar 

  11. J. Zhu, S. Wei, N. Haldolaarachchige, D.P. Young, Z. Guo, J. Phys. Chem. C 115, 15304 (2011)

    Article  Google Scholar 

  12. Z. Guo, S. Park, H.T. Hahn, S. Wei, M. Moldovan, A.B. Karki, D.P. Young, J. Appl. Phys. 101, 09M511 (2007)

    Google Scholar 

  13. Y. Wang, P.S. Grant, Appl. Phys. A 117, 477 (2014)

    Article  Google Scholar 

  14. W. Barry, IEEE Microw. Theory Tech. 34, 80 (1986)

    Article  Google Scholar 

  15. Z. Guo, S. Park, S. Wei, T. Pereira, M. Moldovan, A.B. Karki, D.P. Young, H.T. Hahn, Nanotechnology 18, 335704 (2007)

    Article  Google Scholar 

  16. Z. Guo, S.-E. Lee, H. Kim, S. Park, H.T. Hahn, A.B. Karki, D.P. Young, Acta Mater. 57, 267 (2009)

    Article  Google Scholar 

  17. L. Parke, I.R. Hooper, R.J. Hicken, C.E.J. Dancer, P.S. Grant, I.J. Youngs, J.R. Sambles, A.P. Hibbins, APL Mater. 1, 042108 (2013)

    Article  ADS  Google Scholar 

  18. W.W. Weir, Proc. IEEE 62, 33 (1974)

    Article  Google Scholar 

  19. A.M. Nicolson, G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970)

    Article  Google Scholar 

  20. A. Globus, J. Phys. Colloques 38, C1-1–C1-15 (1977)

    Google Scholar 

  21. H. Su, H. Zhang, X. Tang, Y. Jing, J. Appl. Phys. 103, 093903 (2008)

    Article  ADS  Google Scholar 

  22. R.E. Alley Jr, Bell Syst. Tech. J. 32, 5 (1953)

    Article  Google Scholar 

  23. H. Dawoud, S. Shaat, An-Najah Univ. J. Res. (N. Sc) 20, 87 (2006)

    Google Scholar 

  24. M.T. Johnson, E.G. Visser, IEEE Trans. Magn. 26, 1987 (1990)

    Article  ADS  Google Scholar 

  25. M. Anhalt, J. Magn. Magn. Mater. 320, 366 (2008)

    Article  ADS  Google Scholar 

  26. Z.W. Li, G.Q. Lin, Y.P. Wu, L.B. Kong, J. Magn. Magn. Mater. 321, 734 (2009)

    Article  ADS  Google Scholar 

  27. N.E. Kazantseva, J. Vilcakova, V. Kresalek, P. Saha, I. Sapurina, J. Stejskal, J. Magn. Magn. Mater. 269, 30 (2004)

    Article  ADS  Google Scholar 

  28. K. Lichtenecker, K. Rother, Z. Phys. 32, 255 (1931)

    Google Scholar 

  29. R. Simpkin, IEEE Trans. Microw. Theory Tech. 58, 3 (2010)

    Article  Google Scholar 

  30. L. Parke, I.J. Youngs, A.P. Hibbins, J.R. Sambles, Appl. Phys. Lett. 104, 221905 (2014)

    Article  ADS  Google Scholar 

  31. H. Mosallaei, K. Sarabandi, IEEE Trans. Antennas Propag. 52, 1558 (2004)

    Article  ADS  Google Scholar 

  32. L.J. Chu, J. Appl. Phys. 10, 1163 (1948)

    Article  ADS  Google Scholar 

  33. H.A. Wheeler, Proc. IRE 47, 1325 (1959)

    Article  Google Scholar 

  34. S.R. Best, IEEE Trans. Antennas Propag. 52, 953 (2004)

    Article  ADS  Google Scholar 

  35. S.R. Best, IEEE Antennas Propag. Mag. 46, 9 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  36. S.R. Best, IEEE Trans. Antennas Propag. 53, 502 (2005)

    Article  ADS  Google Scholar 

  37. S.R. Best, IEEE Antennas Propag. Mag. 53, 1047 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the UK Engineering and Physical Sciences Research Council (QUEST Programme Grant EP/I034548/1) and the UK Defence Science and Technology Laboratory for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Edwards, E., Hooper, I. et al. Scalable polymer-based ferrite composites with matching permeability and permittivity for high-frequency applications. Appl. Phys. A 120, 609–614 (2015). https://doi.org/10.1007/s00339-015-9223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9223-z

Keywords

Navigation