Skip to main content
Log in

Fabrication and corrosion resistance of superhydrophobic magnesium alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A superhydrophobic magnesium alloy (AZ91) is successfully fabricated by sulfuric acid etching, AgNO3 treatment, and dodecyl mercaptan (DM) modification. The effect of the fabrication procedure, the concentration and treatment time of sulfuric acid, AgNO3, and DM on morphology, phase structure, surface wettability, and surface composition of the AZ91 is investigated in detail. Consequently, the optimal treatment parameters are selected, and the superhydrophobic magnesium alloy with a water contact angle of 154° and a sliding angle of 5° is fabricated. The acid etching endows the AZ91 surface with rough structure while the AgNO3 treatment results in more protrusions and grooves. Meanwhile, the long hydrophobic alkyl chains are self-assembled onto the rough AZ91 surface upon DM modification. As a result, the multilayer of netlike surface with protrusions and grooves together with the coral-like structure is obtained. Additionally, the magnesium alloy with higher water contact angle has better corrosion resistance, while the magnesium alloy with the superhydrophobic property has the best corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Li, Z.X. Kang, Fabrication of corrosion resistant superhydrophobic surface with self-cleaning property on magnesium alloy and its mechanical stability. Surf. Coat. Technol. 253, 205–213 (2014)

    Article  Google Scholar 

  2. L.C. Zhao, C.X. Cui, X. Wang, S.J. Liu, S.J. Bu, Q.Z. Wang, Y.M. Qi, Corrosion resistance and calcium–phosphorus precipitation of micro-arc oxidized magnesium for biomedical applications. Appl. Surf. Sci. 330, 431–438 (2015)

    Article  ADS  Google Scholar 

  3. M.A. Taleghani, J.M. Torralba, The microstructural evolution of a pre-alloyed AZ91 magnesium alloy powder through high-energy milling and subsequent isothermal annealing. Mater. Lett. 98, 182–185 (2013)

    Article  Google Scholar 

  4. T. Ishizaki, J. Hieda, N. Saito, N. Saito, O. Takai, Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition. Electrochim. Acta 55, 7094–7101 (2010)

    Article  Google Scholar 

  5. T. Ishizaki, Y. Masuda, M. Sakamoto, Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution. Langmuir 27, 4780–4788 (2011)

    Article  Google Scholar 

  6. Z.J. Li, X.N. Gu, S.Q. Lou, Y.F. Zheng, The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29, 1329–1344 (2008)

    Article  Google Scholar 

  7. M.A. Lopez, M.D. Pereda, J.A.D. Valle, M.F. Lorenzo, M.C.G. Alonso, O.A. Ruano, Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater. 6, 1763–1771 (2010)

    Article  Google Scholar 

  8. Y.W. Song, D.Y. Shan, E.H. Han, Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater. Lett. 62, 3276–3279 (2008)

    Article  Google Scholar 

  9. L. Zhao, Q. Liu, R. Gao, One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance. Corros. Sci. 80, 177–183 (2014)

    Article  Google Scholar 

  10. J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys—a critical review. J. Alloys Compd. 336, 88–113 (2002)

    Article  Google Scholar 

  11. Z.X. She, Q. Li, Z.W. Wang, Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chem. Eng. J. 228, 415–424 (2013)

    Article  Google Scholar 

  12. Q. Zhu, Q.M. Pan, F.T. Liu, Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. J. Phys. Chem. C 115, 17464–17471 (2011)

    Article  MATH  Google Scholar 

  13. J. Li, X.H. Liu, Y.P. Ye, H.D. Zhou, J.M. Chen, Gecko-inspired synthesis of superhydrophobic ZnO surfaces with high water adhesion. Colloids Surf. A 384, 109–114 (2011)

    Article  Google Scholar 

  14. S. Jung, M. Dorrestijn, D. Raps, A. Das, C.M. Megaridis, D. Poulikakos, Are superhydrophobic surfaces best for icephobicity? Langmuir 27, 3059–3066 (2011)

    Article  Google Scholar 

  15. D. Nyström, J. Lindqvist, E. Östmark, P. Antoni, A. Carlmark, A. Hult, E. Malmström, Superhydrophobic and self-cleaning bio-fiber surfaces via ATRP and subsequent postfunctionalization. ACS Appl. Mater. Interfaces 1, 816–823 (2009)

    Article  Google Scholar 

  16. L.J. Liu, F.Y. Xu, L. Ma, Facile fabrication of a superhydrophobic Cu surface via a selective etching of high-energy facets. J. Phys. Chem. C 116, 18722–18727 (2012)

    Article  Google Scholar 

  17. S. Yagi, A. Sengoku, K. Kubota, E. Matsubara, Surface modification of ACM522 magnesium alloy by plasma electrolytic oxidation in phosphate electrolyte. Corros. Sci. 57, 74–80 (2012)

    Article  Google Scholar 

  18. W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)

    Article  Google Scholar 

  19. Y.M. Zheng, X.F. Gao, L. Jiang, Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3, 178–185 (2007)

    Article  ADS  Google Scholar 

  20. K.S. Liu, X. Yao, L. Jiang, Recent developments in bio-inspired special wettability. Chem. Soc. Rev. 39, 3240–3255 (2010)

    Article  Google Scholar 

  21. L.B. Feng, Y.H. Liu, H.X. Zhang, Y.P. Wang, X.H. Qiang, Superhydrophobic alumina surface with high adhesive force and long-term stability. Colloids Surf. A 410, 66–71 (2012)

    Article  Google Scholar 

  22. Y.W. Song, D.Y. Shan, E.H. Han, High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys. Electrochim. Acta 53, 2135–2143 (2008)

    Article  Google Scholar 

  23. L.B. Feng, Y.H. Che, Y.H. Liu, X.H. Qiang, Y.P. Wang, Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method. Appl. Surf. Sci. 283, 367–374 (2013)

    Article  ADS  Google Scholar 

  24. J.L. Song, W.J. Xu, Y. Lu, X. Liu, J. Sun, Fabrication of superhydrophobic surfaces on Mg alloy substrates via primary cell corrosion and fluoroalkylsilane modification. Mater. Corros. 64, 979–987 (2013)

    Article  Google Scholar 

  25. L.B. Feng, H.X. Zhang, Z.L. Wang, Y.H. Liu, Superhydrophobic aluminum alloy surface: fabrication, structure, and corrosion resistance. Colloids Surf. A 441, 319–325 (2014)

    Article  Google Scholar 

  26. Q.W. Chu, J. Liang, J.C. Hao, Facile fabrication of a robust super-hydrophobic surface on magnesium alloy. Colloids Surf. A 443, 118–122 (2014)

    Article  Google Scholar 

  27. Z.W. Wang, Y.L. Su, Q. Li, Y. Liu, Z.X. She, F.N. Chen, L.Q. Li, P. Zhang, Researching a highly anti-corrosion superhydrophobic film fabricated on AZ91D magnesium alloy and its anti-bacteria adhesion effect. Mater. Charact. 99, 200–209 (2015)

    Article  Google Scholar 

  28. Z.X. She, Q. Li, Z.W. Wang, L.Q. Li, F.N. Chen, J.C. Zhou, Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy. ACS Appl. Mater. Interfaces 4, 4348–4356 (2012)

    Article  Google Scholar 

  29. X. Deng, L. Mammen, H. Butt, D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67–70 (2012)

    Article  ADS  Google Scholar 

  30. W.J. Xu, J.L. Song, J. Sun, Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. ACS Appl. Mater. Interfaces 3, 4404–4414 (2011)

    Article  Google Scholar 

  31. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 44, 546–551 (1944)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (Grant No. 21161012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Zhu, Y., Fan, W. et al. Fabrication and corrosion resistance of superhydrophobic magnesium alloy. Appl. Phys. A 120, 561–570 (2015). https://doi.org/10.1007/s00339-015-9215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9215-z

Keywords

Navigation