Skip to main content
Log in

Well-aligned carbon nitride nanorods: the template-free synthesis and their optical and thermal properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The fabrication and optical properties of well-aligned graphitic carbon nitride nanorods are demonstrated. The growth strategy involves the polycondensation of ballmilled molecular precursors of melamine and cyanuric chloride at programmed temperatures. The compositional and structural characterizations confirm that the prepared samples are polymeric graphitic carbon nitride with high crystallinity. The morphological studies reveal that the prepared samples consist of nanorods aligning nearly in parallel. The photophysical features of the carbon nitride nanorods can be satisfactorily described by the excitation and radiative recombination of molecular excitons. The significantly improved interlayer stacking, as well as the shifting of optical bandgap to higher energies, may be attributed to the general nanosize effect. Due to the overlap of orbitals induced by the delocalization of electrons in the sp 2 clusters with the higher packing density perpendicular to the layers, a wider bandgap is proposed for this peculiar nanoarchitecture. The luminescent nanorods remain thermally stable up to about 500 °C during calcination under atmospheric conditions, indicating their potential applications as sensors and nanoelectronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.H. Huang, P.H. Lin, Adv. Funct. Mater. 22, 14–24 (2012)

    Article  Google Scholar 

  2. T.K. Sau, A.L. Rogach, Adv. Mater. 22, 1781–1804 (2010)

    Article  Google Scholar 

  3. T.K. Sau, A.L. Rogach, F. Jäckel, T.A. Klar, J. Feldmann, Adv. Mater. 22, 1805–1825 (2010)

    Article  Google Scholar 

  4. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán, Chem. Soc. Rev. 37, 1783–1791 (2008)

    Article  Google Scholar 

  5. D. Wang, Y. Li, Adv. Mater. 23, 1044–1060 (2011)

    Article  Google Scholar 

  6. Y. Jun, J. Choi, J. Cheon, Angew. Chem. Int. Ed. 45, 3414–3439 (2006)

    Article  Google Scholar 

  7. X. Liang, L. Gao, S. Yang, J. Sun, Adv. Mater. 21, 2068–2071 (2009)

    Article  Google Scholar 

  8. N. Wang, X. Cao, L. Guo, S. Yang, Z. Wu, ACS Nano 2, 184–190 (2008)

    Article  Google Scholar 

  9. E. Kroke, M. Schwarz, Coord. Chem. Rev. 248, 493–532 (2004)

    Article  Google Scholar 

  10. G. Goglio, D. Foy, G. Demazeau, Mater. Sci. Engin. R 58, 195–227 (2008)

    Article  Google Scholar 

  11. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. Müller, R. Schlögl, J.M. Carlsson, J. Mater. Chem. 18, 4893–4908 (2008)

    Article  Google Scholar 

  12. Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51, 68–89 (2012)

    Article  Google Scholar 

  13. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76–80 (2009)

    Article  ADS  Google Scholar 

  14. J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, J. Mater. Chem. 21, 14398–14401 (2011)

    Article  Google Scholar 

  15. J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu and X. Wang. Nat. Commun. 1139 (2012)

  16. Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Adv. Mater. 25, 6291–6297 (2013)

    Article  Google Scholar 

  17. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Adv. Mater. 25, 2452–2456 (2013)

    Article  Google Scholar 

  18. J. Zhang, M. Zhang, C. Yang, X. Wang, Adv. Mater. 26, 4121–4126 (2014)

    Article  Google Scholar 

  19. X.H. Li, J. Zhang, X. Chen, A. Fischer, A. Thomas, M. Antonietti, X. Wang, Chem. Mater. 23, 4344–4348 (2011)

    Article  Google Scholar 

  20. Z. Zhang, K. Leinenweber, M. Bauer, L.A.J. Garvie, P.F. McMillan, G.H. Wolf, J. Am. Chem. Soc. 123, 7788–7796 (2001)

    Article  Google Scholar 

  21. H. Montigaud, B. Tanguy, G. Demazeau, I. Alves, S. Courjault, J. Mat. Sci. 35, 2547–2552 (2000)

    Article  ADS  Google Scholar 

  22. Y. Li, J. Zhang, Q. Wang, Y. Jin, D. Huang, Q. Cui, G. Zou, J. Phys. Chem. B 114, 9429–9434 (2010)

    Article  Google Scholar 

  23. J. Zhang, Y. Li, P. Zhu, D. Huang, S. Wu, Q. Cui, G. Zou, Diam. Rel. Mater. 20, 385–388 (2011)

    Article  Google Scholar 

  24. E. Kroke, M. Schwarz, P. Kroll, E. Bordon, B. Noll, A. Norman, New J. Chem. 26, 508–512 (2002)

    Article  Google Scholar 

  25. B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick, J. Am. Chem. Soc. 125, 10288–10300 (2003)

    Article  Google Scholar 

  26. D.R. Miller, D.C. Swenson, E.G. Gillan, J. Am. Chem. Soc. 126, 5372–5373 (2004)

    Article  Google Scholar 

  27. K. Gibson, J. Glaser, E. Milke, M. Marzini, S. Tragl, M. Binnewies, H.A. Mayer, H.J. Meyer, Mater. Chem. Phys. 112, 52–56 (2008)

    Article  Google Scholar 

  28. Jellison G.E. Jr, F.A. Modine, Appl. Phys. Lett. 69, 371–373 (1996)

    Article  ADS  Google Scholar 

  29. M. Groenewolt, M. Antonietti, Adv. Mater. 17, 1789–1792 (2005)

    Article  Google Scholar 

  30. C. Merschjann, T. Tyborski, S. Orthmann, F. Yang, K. Schwarzburg, M. Lublow, M-Ch. Lux-Steiner, Th Schedel-Niedrig, Phys. Rev. B 87, 205204 (2013)

    Article  ADS  Google Scholar 

  31. Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu, Sci. Rep. 3, 1943 (2013)

    ADS  Google Scholar 

  32. Y. Iwano, T. Kittaka, H. Tabuchi, M. Soukawa, S. Kunitsugu, K. Takarabe, K. Itoh, Jpn. J. Appl. Phys. 47, 7842–7844 (2008)

    Article  ADS  Google Scholar 

  33. J. Wang, D.R. Miller, E.G. Gillan, Chem. Commun. 2258–2259 (2002)

  34. M. Deifallah, P.F. McMillan, F. Corà, J. Phys. Chem. C 112, 5447–5453 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of China (Grant Nos. 50772043, 51172087, and 11074089) and the National Basic Research Program of China (Grant No. 2011CB808200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wu, S., Zhang, J. et al. Well-aligned carbon nitride nanorods: the template-free synthesis and their optical and thermal properties. Appl. Phys. A 119, 1507–1513 (2015). https://doi.org/10.1007/s00339-015-9128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9128-x

Keywords

Navigation