Skip to main content
Log in

Phonon localization in ultrathin layered structures

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An efficient way for minimizing phonon thermal conductivity in solids is to nanostructure them by means of reduced phonon mean free path, phonon scattering and phonon reflection at interfaces. A sophisticated approach toward this lies in the fabrication of thin multilayer films of different materials. In this paper, we show by femtosecond-pump-probe reflectivity measurements that in different multilayer systems with varying acoustic mismatch (consisting of metals, semiconductors, oxides and polymers), oscillations due to phonon localization can be observed. For the growth of multilayer films with well-defined layer thicknesses, we used magnetron sputtering, evaporation and pulsed laser deposition. By altering the material combinations and reducing the layer thicknesses down to 3 nm, we observed different mechanisms of phonon blocking, reaching in the frequency regime up to 360 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Donabedian, D.G. Gilmore, in Satellite Thermal Control Handbook, ed. by D.G. Gilmore (The Aerospace Corporation Press, 1994), Ch. 4, Sec. 3

  2. A.M. Limarga, D.R. Clarke, Int. J. Appl. Ceram. Technol. 6, 400 (2009)

    Article  Google Scholar 

  3. D. Josell, A. Cezairliyan, J.E. Bonevich, Int. J. Thermophys. 19, 525 (1998)

    Article  Google Scholar 

  4. K.E. Goodson, Science 315, 343 (2007)

    Article  Google Scholar 

  5. R.M. Costescu, D.G. Cahill, F.H. Fabreguette, Z.A. Sechrist, S.M. George, Science 303, 989 (2004)

    Article  ADS  Google Scholar 

  6. C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Science 315, 351 (2007)

    Article  ADS  Google Scholar 

  7. S.M. Lee, D.G. Cahill, T.H. Allen, Phys. Rev. B 52, 1 (1995)

    Article  Google Scholar 

  8. C. Thomsen, J. Strait, Z. Vardeny, H.J. Maris, J. Tauc, J.J. Hauser, Phys. Rev. Lett. 52, 10 (1984)

    Google Scholar 

  9. R. Merlin, Solid State Commun. 102, 207 (1997)

    Article  ADS  Google Scholar 

  10. R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley, Phys. Rev. Lett. 58, 1680 (1987)

    Article  ADS  Google Scholar 

  11. S.D. Brorson, A. Kazeroonian, J.S. Moodera, D.W. Face, T.K. Cheng, E.P. Ippen, M.S. Dresselhaus, G. Dresselhaus, Phys. Rev. Lett. 64, 2172 (1990)

    Article  ADS  Google Scholar 

  12. Y. Ezzahri, S. Grauby, J.M. Rampnoux, H. Michel, G. Pernot, W. Claeys, S. Dilhaire, C. Rossignol, G. Zeng, A. Shakouri, Phys. Rev. B 75, 195309 (2007)

    Article  ADS  Google Scholar 

  13. B. Djafari-Rouhani, L. Dobrzynski, O. Hardouin Duparc, R.E. Camley, A.A. Maradudin, Phys. Rev. B 28, 1711 (1983)

    Article  ADS  Google Scholar 

  14. H.U. Krebs, O. Bremert, Appl. Phys. Lett. 62, 2341 (1993)

    Article  ADS  Google Scholar 

  15. D.L. Windt, Comput. Phys. 12, 360 (1998)

    Article  ADS  Google Scholar 

  16. C. Eberl, T. Liese, F. Schlenkrich, F. Döring, H. Hofsäss, H.U. Krebs, Appl. Phys. A 111, 431 (2013)

    Article  ADS  Google Scholar 

  17. C. Eberl, F. Döring, T. Liese, F. Schlenkrich, B. Roos, M. Hahn, T. Hoinkes, A. Rauschenbeutel, M. Osterhoff, T. Salditt, H.U. Krebs, Appl. Surf. Sci. 307, 638 (2014)

    Article  Google Scholar 

  18. S. Fähler, H.U. Krebs, Appl. Surf. Sci. 96–98, 61–65 (1996)

    Article  Google Scholar 

  19. J. Röder, T. Liese, H.U. Krebs, J. Appl. Phys. 107, 103515 (2010)

    Article  ADS  Google Scholar 

  20. F. Döring, A.L. Robisch, C. Eberl, M. Osterhoff, A. Ruhlandt, T. Liese, F. Schlenkrich, S. Hoffmann, M. Bartels, T. Salditt, H.U. Krebs, Opt. Express 21, 19311 (2013)

    Article  ADS  Google Scholar 

  21. H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, G.A. Mourou, Phys. Rev. Lett. 58, 1212 (1987)

    Article  ADS  Google Scholar 

  22. A. Taflove, Advances in Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, 1998)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 1073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. U. Krebs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Döring, F., Eberl, C., Schlenkrich, S. et al. Phonon localization in ultrathin layered structures. Appl. Phys. A 119, 11–18 (2015). https://doi.org/10.1007/s00339-015-9037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9037-z

Keywords

Navigation