Skip to main content
Log in

First-principle calculations on the effect of impurities on different stacking of h-BN bilayers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The dependence of the stability and the electronic structure of hexagonal boron nitride bilayers (h-BN) on antisites and carbon impurities has been described and investigated for different types of stacking in order to provide the fingerprint of both the stacking order and substitutional single-atom defects, which affect electronic and chemical properties of such bilayered systems. In doing so, we use first-principle calculations based on density functional theory to study the properties of twelve different h-BN bilayers. In what concerns their stability, we demonstrate, by calculating the formation energy, that carbon impurities are usually more stable than antisite defects and that the environment constituents play a fundamental role in the stability. About the electronic structure, we find that, in general, the defects are responsible for introducing discrete states in the band gap region, whereas the stacking order dictates their positioning with respect to the Fermi level. This emphasizes the importance of the stacking order and defect formation in the control of the electronic properties of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Song et al., Adv. Mater. 24, 4878 (2012)

    Google Scholar 

  2. K.S. Novoselov et al., Nature 438, 4233 (2005)

    Article  Google Scholar 

  3. K.S. Novoselov, D. Jiang, A.K. Geim, PNAS 102, 10451 9 (2005)

    Google Scholar 

  4. B. Radiasavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)

    ADS  Google Scholar 

  5. N. Berseneva, A. Gulans, A.V. Krashneninnikov, R.M. Nieminen, Phys. Rev. B 87, 035404 (2013)

    ADS  Google Scholar 

  6. C. Attaccalite, M. Bockstedle, A. Marini, A. Rubio, W. Wirtz, Phys. Rev. B 83, 144115 (2011)

    ADS  Google Scholar 

  7. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Nat. Mater. 9, 430 (2010)

    ADS  Google Scholar 

  8. S. Azevedo, R. de Paiva, J.R. Kaschny, J. Phys. Condens. Matter 18, 10871 (2006)

    ADS  Google Scholar 

  9. M.S.C. Mazzoni, R.W. Nunes, S. Azevedo, H. Chacham, Phys. Rev. B 73, 073108 (2006)

    ADS  Google Scholar 

  10. M. Kawaguchi, T. Kawashima, T. Nakajima, Chem. Mater. 8, 1197 (1996)

    Google Scholar 

  11. K. Yuge, Phys. Rev. B 79, 144109 (2009)

    ADS  Google Scholar 

  12. J. da Rocha Martins, H. Chacham, ACS Nano 5, 385 (2011)

    Article  Google Scholar 

  13. X. Wei, M. Wang, Y. Bando, D. Golberg, J. Am. Chem. Soc. 132, 13592 (2010)

    Google Scholar 

  14. G. Gao, W. Gao, E. Cannuccia, J. T-Tijerina, L. Balicas, A. Mathkar, T.N. Narayanan, Z. Liu, B.K. Gupta, J. Peng, Y. Yin, A. Rubio, P.M. Ajayan, Nano Lett. 12, 3518–3525 (2012)

    ADS  Google Scholar 

  15. G. Constantinescu, A. Kuc, T. Heine, Phys. Rev. Lett. 111, 036104 (2013)

    ADS  Google Scholar 

  16. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965)

    ADS  MathSciNet  Google Scholar 

  17. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junqueira, P. Ordejon, D. Sanchez-Portal, J. Phys. Condens. Matter. 14, 2745–2779 (2002)

    ADS  Google Scholar 

  18. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    ADS  Google Scholar 

  19. M. Dion, H. Rydberg, E. Schroder, D.C. Langreth, I.B. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)

    ADS  Google Scholar 

  20. T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D.C. Langreth, Phys. Rev. B 76, 125112 (2007)

    ADS  Google Scholar 

  21. G. Román Pérez, J.M. Soler, Phys. Rev. Lett. 103, 096102 (2009)

    ADS  Google Scholar 

  22. L.C. Gomes, S.S. Alexandre, H. Chacham, R.W. Nunes, J. Phys. Chem. C 117, 117770–11779 (2013)

    Google Scholar 

  23. S. Azevedo, J.R. Kaschny, C. Castilho, F.B. da Mota Kaschny, Eur. Phys. J. B 67, 507–512 (2009)

    ADS  Google Scholar 

  24. A. Freitas, S. Azevedo, J.R. Kaschny, M. Machado, Appl. Phys. A 114, 1039–1048 (2014)

    ADS  Google Scholar 

  25. S. Azevedo, R. de Paiva, J.R. Kaschny, J. Phys. Condens. Matter 18, 10871–10879 (2006)

    ADS  Google Scholar 

  26. R.C. Barbosa, R.J. Baierle, Thin Solid Films 551, 136–141 (2014)

    Article  ADS  Google Scholar 

  27. J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones, G. Aivazian, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, X. Xu, Nat. Commun. 4(1474), 1–6 (2013)

    Google Scholar 

  28. A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Phys. Rev. B 51, 4606–4613 (1995)

    ADS  Google Scholar 

  29. M. Aoki, H. Amawashi, Solid State Commun. 142, 123 (2007)

    ADS  Google Scholar 

  30. F. Guinea, A.H. Castro Neto, N.M.R. Peres, Phys. Rev. B 73, 245426 (2006)

    ADS  Google Scholar 

  31. A.A. Avetisyan, B. Partoens, F.M. Peeters, Phys. Rev. B 81, 115432 (2010)

    ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the Brazilian agencies CNPq, CAPES/NANOBIOTEC and INCT—Nanomaterias de Carbono.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Azevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dantas, M., de Lima Bernardo, B. & Azevedo, S. First-principle calculations on the effect of impurities on different stacking of h-BN bilayers. Appl. Phys. A 119, 697–705 (2015). https://doi.org/10.1007/s00339-015-9015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9015-5

Keywords

Navigation