Skip to main content
Log in

Actuation and instability of interconnected dielectric elastomer balloons

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a theoretical analysis of a prototype model of two inflated dielectric elastomer (DE) balloons connected via a small channel. Such an interconnected balloon system can work as an actuator. The active balloon is subject to applied voltage and can produce deformation, while the passive balloon serves to supply gas or to sustain external pressure. We analyze the actuating of such DE device, with special emphasis on the effects of ambient pressure, initial inflation pressure, and volume ratio of the two balloons on the actuation and instability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000)

    Article  ADS  Google Scholar 

  2. F. Carpi, S. Bauer, D. De Rossi, Stretching dielectric elastomer performance. Science 330(6012), 1759–1761 (2010)

    Article  ADS  Google Scholar 

  3. P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31(1), 10–36 (2010)

    Article  Google Scholar 

  4. I.A. Anderson, T.A. Gisby, T.G. Mckay, B.M. O’Brien, E.P. Calius, Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112(4), 041101 (2012)

    Article  ADS  Google Scholar 

  5. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26(1), 149–162 (2014)

    Article  Google Scholar 

  6. J. Biggs, K. Danielmeier, J. Hitzbleck, J. Krause, T. Kridl, S. Nowak, E. Orselli, X. Quan, D. Schapeler, W. Sutherland, J. Wagner, Electroactive polymers: developments of and perspectives for dielectric elastomers. Angew. Chem. Int. Ed. 52(36), 9409–9421 (2013)

    Article  Google Scholar 

  7. C. Keplinger, J.Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z. Suo, Stretchable, transparent, ionic conductors. Science 341(6149), 984–987 (2013)

    Article  ADS  Google Scholar 

  8. M.L. Hammock, A. Chortos, B.C.-K. Tee, J.B.-H. Tok, Z. Bao, The evolution of electronic skin (E-Skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6038 (2013)

    Article  Google Scholar 

  9. M. Kollosche, H. Stoyanov, S. Laflammeb, G. Kofod, Strongly enhanced sensitivity in elastic capacitive strain sensors. J. Mater. Chem. 21(23), 8292–8294 (2011)

    Article  Google Scholar 

  10. S. Laflamme, M. Kollosche, J.J. Connor, G. Kofod, Soft capacitive sensor for structural health monitoring of large scale systems. Strut. Cont. Heal. Monit. 19(1), 70–81 (2012)

    Article  Google Scholar 

  11. M. Aschwanden, A. Stemmer, Polymeric, electrically tunable diffraction grating based on artificial muscles. Opt. Lett. 31(17), 2610–2612 (2006)

    Article  ADS  Google Scholar 

  12. S. Shian, R.M. Diebold, D.R. Clarke, Tunable lenses using transparent dielectric elastomer actuators. Opt. Express 21(7), 8669–8676 (2013)

    Article  ADS  Google Scholar 

  13. R. Pelrine, R. Kornbluh, J. Eckerle, P. Jeuck, S. Oh, Q. Pei, Dielectric elastomer: generator mode fundamentals and applications. Proc. SPIE 4329, 148–156 (2001)

    ADS  Google Scholar 

  14. F. Carpi, G. Frediani, D. De Rossi, Hydrostatically coupled dielectric elastomer actuators. IEEE/ASME Trans. Mechatron. 13(2), 308–315 (2010)

    Article  Google Scholar 

  15. F. Carpi, G. Frediani, M. Nanni, D. De Rossi, Granularly-coupled dielectric elastomer actuator. IEEE/ASME Trans. Mechatron. 16(1), 16–23 (2011)

    Article  Google Scholar 

  16. H.M. Wang, S.Q. Cai, F. Carpi, Z.G. Suo, Computational model of hydrostatically-coupled dielectric elastomer actuator. J. Appl. Mech. 79(3), 031008 (2012)

    Article  ADS  Google Scholar 

  17. S. Rudykh, K. Bhattacharya, G. deBotton, Snap-through actuation of thick-wall electroactive balloons. Int. J. Non-Linear Mech. 47, 206–209 (2012)

    Article  ADS  Google Scholar 

  18. C. Keplinger, T.F. Li, R. Baumgartner, Z.G. Suo, S. Bauer, Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8(2), 285–288 (2012)

    Article  ADS  Google Scholar 

  19. T.F. Li, C. Keplinger, R. Baumgartner, S. Bauer, W. Yang, Z.G. Suo, Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. J. Mech. Phys. Solids 61(1), 611–628 (2013)

    Article  ADS  Google Scholar 

  20. M.E. Piyasena, R. Newby, T.J. Miller, B. Shapiro, E. Smela, Electroosmotically driven microfluidic actuators. Sens. Actuators, B 141, 263–269 (2009)

    Article  Google Scholar 

  21. E. Figallo, C. Cannizzaro, S. Gerecht, J.A. Burdick, R. Langer, N. Elvassore, G. Vunjak-Novakovic, Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7, 710–719 (2007)

    Article  Google Scholar 

  22. D.M. Thompson, K.R. King, K.J. Wieder, M. Toner, M.L. Yarmush, A. Jayaraman, Dynamic gene expression profiling using a microfabricated living cell array. Anal. Chem. 76, 4098–4103 (2004)

    Article  Google Scholar 

  23. I. Müller, P. Strehlow, Rubber and rubber balloons: paradigms of thermodynamics, 637. (Springer, Berlin, Heidelberg, 2004), pp. 69–77

  24. A.N. Gent, A new constitutive relation for rubber. Rubb. Chem. Tech. 69(1), 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  25. X. Zhao, W. Hong, Z. Suo, Electromechanical coexistent states and hysteresis in dielectric elastomer. Phys. Rev. B. 76, 134113 (2007)

    Article  ADS  Google Scholar 

  26. J. Zhou, W. Hong, X. Zhao, Z. Zhang, Z. Suo, Propagation of instability in dielectric elastomers. Int. J. Solids Struct. 45, 3739–3750 (2008)

    Article  MATH  Google Scholar 

  27. B. Li, H. Chen, J. Qiang, J. Zhou, A model for conditional polarization of the actuation enhancement of a dielectric elastomer. Soft Matter 8, 311–317 (2012)

    Article  ADS  Google Scholar 

  28. A. Needleman, Inflation of spherical rubber balloons. Int. J. Solids Struct. 13(5), 409–421 (1977)

    Article  Google Scholar 

  29. T.A. Gisby, S.Q. Xie, E.P. Calius, I.A. Anderson, Leakage current as a predictor of failure in dielectric elastomer actuators. Proceeding of SPIE 7642,2010,764213

  30. S.J.A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, Z. Suo, Mechanisms of large actuation strain in dielectric elastomers. J. Polym. Sci. Part B: Polym. Phys. 49, 504–515 (2011)

Download references

Acknowledgments

This research is supported by Natural Science Foundation of China (Grants 11372239, 11472210, 11321062, and 11321202) and Zhejiang Provincial Natural Science Foundation of China (Grant LY13A020001). The authors are grateful to the anonymous reviewers for their insightful comments and suggestions on improving the writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Wang, H. & Zhou, J. Actuation and instability of interconnected dielectric elastomer balloons. Appl. Phys. A 119, 443–449 (2015). https://doi.org/10.1007/s00339-015-9001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9001-y

Keywords

Navigation