Skip to main content
Log in

Hierarchical titania nanostructures prepared with focused ion beam-assisted anodisation of titanium in an aqueous electrolyte

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Titania nanostructures have been prepared by anodisation in aqueous solution assisted by focused ion beam (FIB) milling. The structures formed are bi-periodic, a disordered “native” nanotube array, with characteristics similar to those formed by the standard anodisation process and an ordered array of tubes with larger diameters, guided by the positioning of the FIB concave pits. Low kV EDX analysis shows implanted Ga in FIB-treated titanium which is efficiently removed by the anodisation process. Following thermal annealing, the FIB-treated regions also crystallise to the same anatase phase as the native regions. This result is in stark contrast to previous FIB-assisted anodisation studies which only produced nanostructured arrays of native dimensions. This singularity is discussed in terms of the stable FIB-induced crystalline defects which, in an aqueous electrolyte, can result in the growth of a weaker barrier layer and larger tubes. This novel process gave hexagonal and square arrays with tailored cross-sectional dimensions and therefore has potential for the synthesis of novel meta-materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.E. Thompson, Thin Solid Films 297, 192 (1997)

    Article  ADS  Google Scholar 

  2. G.K. Mor, K. Shankar, O.K. Varghese, C.A. Grimes, J. Mater. Res. 19, 2989 (2004)

    Article  ADS  Google Scholar 

  3. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 5, 191 (2005)

    Article  ADS  Google Scholar 

  4. O.K. Varghese, M. Paulose, K. Shankar, G.K. Mor, C.A. Grimes, J. Nanosci. Nanotechnol. 5, 1158 (2005)

    Article  Google Scholar 

  5. U. Kirner, K.D. Schierbaum, W. Gopel, Sens. Actuators B 1, 103 (1990)

    Article  Google Scholar 

  6. C.V.G. Reddy, S.V. Manorama, J. Electrochem. Soc. 147, 390 (2000)

    Article  Google Scholar 

  7. Y. Shimizu, N. Kuwano, T. Hyodo, M. Egashira, Sens. Actuators B 83, 195 (2002)

    Article  Google Scholar 

  8. B. O’Regan, M. Gratzel, Nature 353, 737 (1991)

    Article  ADS  Google Scholar 

  9. M. Gratzel, Nature 414, 338 (2001)

    Article  ADS  Google Scholar 

  10. R. Tenne, C.N.R. Rao, Philos. Trans. R. Soc. A 362, 2099 (2004)

    Article  ADS  Google Scholar 

  11. D. Kowalski, D. Kim, P. Schmuki, Nano Today 8, 235 (2013)

    Article  Google Scholar 

  12. G. Zhang, H. Huang, Y. Liu, L. Zhou, Appl. Catal. B 90, 262 (2009)

    Article  Google Scholar 

  13. B. Chen, K. Lu, Z. Tian, Langmuir 27(2), 800 (2011)

    Article  Google Scholar 

  14. B. Chen, K. Lu, Z. Tian, J. Mater. Chem. 21, 8835 (2011)

    Article  Google Scholar 

  15. A.P. Robinson, G. Burnell, M. Hu, J.L. MacManus-Driscoll, Appl. Phys. Lett. 91, 143123 (2007)

    Article  ADS  Google Scholar 

  16. B. Chen, K. Lu, Z. Tian, Electrochim. Acta 56, 435 (2010)

    Article  Google Scholar 

  17. Z.P. Tian, K. Lu, B. Chen, Nanotechnology 21, 405301 (2010)

    Article  Google Scholar 

  18. G.R. Dale, J.W.J. Hamilton, P.S.M. Dunlop, P. Lemoine, J.A. Byrne, J. Nanosci. Nanotech. 9, 4215 (2009)

    Article  Google Scholar 

  19. G. Dale, Electrochemical growth Titania nanotubes: characterisation and electrochemistry, PhD Dissertation, University of Ulster, Jordanstown, 2009

  20. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energ. Mat. Sol. C. 90, 2011 (2006)

    Article  Google Scholar 

  21. G. Patermarakis, K. Moussoutzanis, J. Electrochem. Soc. 142, 737 (1995)

    Article  Google Scholar 

  22. C. Longo, A.F. Nogueira, M.A. DePaoli, J. Phys. Chem. B 106, 5925 (2002)

    Article  Google Scholar 

  23. K. Kanaya, S. Okayama, J. Phys. D Appl. Phys. 5, 43 (1972)

    Article  ADS  Google Scholar 

  24. C.Y. Liu, A. Datta, Y.L. Wang, Appl. Phys. Lett. 78(1), 120 (2001)

    Article  ADS  Google Scholar 

  25. N.W. Liu, A. Datta, C.Y. Liu, Y.L. Wang, Appl. Phys. Lett. 82(8), 1281 (2003)

    Article  ADS  Google Scholar 

  26. A.P. Robinson, G. Burnell, M. Hu, J.L.M. Driscoll, Appl. Phys. Lett. 91, 143123 (2007)

    Article  ADS  Google Scholar 

  27. J. Choi, R.B. Wehrspohn, J. Lee, U. Gosele, Electrochim. Acta 49, 2645 (2004)

    Article  Google Scholar 

  28. D.D. Macdonald, Electrochim. Acta 56, 1761 (2011)

    Article  Google Scholar 

  29. G.E. Thompson, R.C. Furneaux, G.C. Wood, Nature 272(5652), 433 (1978)

    Article  ADS  Google Scholar 

  30. V.P. Parkhutik, V.I. Shershulsky, J. Phys. D Appl. Phys. 25, 1258 (1992)

    Article  ADS  Google Scholar 

  31. S.K. Thamida, H.C. Chang, J. Appl. Phys. 12(1), 240 (2002)

    Google Scholar 

  32. M.A. Henderson, Surf. Sci. 419, 174 (1999)

    Article  ADS  Google Scholar 

  33. A. Schilling, T. Adams, R.M. Bowman, J.M. Gregg, Nanotechnology 18, 035301 (2007)

    Article  ADS  Google Scholar 

  34. A.A. Tseng, Small 1(10), 924 (2005)

    Article  Google Scholar 

  35. “Hume-Rothery Rules”, Van Nostrand’s Scientific Encyclopedia, Wiley, 2002

  36. J.E. Hatch, Aluminium: properties and physical metallurgy (American Society for Metals, Metals Park, 1998)

    Google Scholar 

  37. P. Schmuki, L.E. Erickson, D.J. Lockwood, J. Porous Mater. 7, 233 (2000)

    Article  Google Scholar 

  38. J.F. Ziegler, The stopping and range of ions in matter, vol. 2–6, (Pergamon Press, New York, 1977-1985)

  39. D.J. Oliver, S. Ruffell, J.E. Bradby, J.S. Williams, M.V. Swain, P. Munroe, P.J. Simpson, Phys. Rev. B 80, 115210 (2009)

    Article  ADS  Google Scholar 

  40. D.J. Sprouster, R. Giulian, L.L. Araujo, P. Kluth, B. Johannessen, D.J. Cookson, G.J. Foran, M.C. Ridgway, J. Appl. Phys. 107, 014313 (2010)

    Article  ADS  Google Scholar 

  41. J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew. Chem. Int. 44, 7493 (2005)

    Google Scholar 

  42. Y.R. Smith, B. Sarma, S.K. Mohnaty, M. Misra, ACS Mater. Interfaces 4, 5883 (2012)

    Article  Google Scholar 

  43. J. Jung, L. Martin-Moreno, F.J. Garcia-Vidal, New J. Phys. 11, 123013 (2009)

    Article  ADS  Google Scholar 

  44. J. Christensen, L. Martín-Moreno, F.J. García-Vidal, Appl. Phys. Lett. 97, 134106 (2010)

    Article  ADS  Google Scholar 

  45. S. Song, L. Jing, S. Li, H. Fu, Y. Luan, Mater. Lett. 62, 3503 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Royal Society through the International Joint Project scheme as well as the Department of Employment and Learning of Northern Ireland (DELNI) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Lemoine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Lemoine, P., Dale, G. et al. Hierarchical titania nanostructures prepared with focused ion beam-assisted anodisation of titanium in an aqueous electrolyte. Appl. Phys. A 119, 107–113 (2015). https://doi.org/10.1007/s00339-014-8967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8967-1

Keywords

Navigation