Skip to main content
Log in

Quantum cutting effect and photoluminescence emission at about 1,000 nm from Er–Yb co-doped ZnO nanoplates prepared by wet chemical precipitation method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO nanoplates with Er-doping concentrations varying in the range from 3 to 7 wt% and co-doped with (Er–Yb) (7 + 7 wt%) were successfully prepared by wet chemical precipitation method. The effects of doping on the structural and optical properties of ZnO nanostructures have been systematically investigated. The structural morphology of the prepared nanostructures was found to change with increasing Er-doping concentrations. The visible photoluminescence and infrared photoluminescence of the prepared nanostructures were measured at room temperature. The intensity of visible emission spectra was found to increase with increasing Er-doping concentrations and was further enhanced for (Er–Yb) co-doped ZnO nanoplate samples. Additionally, Er-doped (7 wt%) and Yb-doped (7 wt%) ZnO nanoplates showed an enhanced emission peak at 950 nm, whereas two enhanced emission peaks at 950 and 980 nm have been found for (Er–Yb)-co-doped (7 + 7 wt%) ZnO nanoplates samples when excited at 310, 365 and 371 nm excitation wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, Y. Takeda, Appl. Phys. Lett. 87, 091109 (2005)

    Article  ADS  Google Scholar 

  2. J. Lang, Q. Han, J. Yang, C. Li, X. Li, L. Yang, Y. Zhang, M. Gao, D. Wang, J. Cao, J. Appl. Phys. 107, 074302 (2010)

    Article  ADS  Google Scholar 

  3. L. Armelao, F. Heigl, A. Jurgensen, R.I.R. Blyth, T. Regier, X.T. Zhou, T.K. Sham, J. Phys. Chem. C 111, 10194 (2007)

    Article  Google Scholar 

  4. J. Yang, M. Gao, L. Yang, Y. Zhang, J. Lang, D. Wang, Y. Wang, H. Liu, H. Fan, Appl. Surf. Sci. 255, 2646 (2008)

    Article  ADS  Google Scholar 

  5. J. Yang, R. Wang, L. Yang, J. Lang, M. Wei, M. Gao, X. Liu, J. Cao, X. Li, N. Yang, J. Alloys. Compd. 509, 3606 (2011)

    Article  Google Scholar 

  6. W.M. Kwok, A.B. Djurisic, Y.H. Leung, W.K. Chen, D.L. Phillips, Appl. Phys. Lett. 87, 093108 (2005)

    Article  ADS  Google Scholar 

  7. X. Zhao, S. Komura, H. Isshiki, Y. Aoyagi, T. Sugano, J. Lumin. 1254 (2000) 87–89

  8. B. Cheng, Z. Wang, Adv. Funct. Mater. 15, 1883 (2005)

    Article  Google Scholar 

  9. M.Y. Zhong, G.Y. Shan, Y.J. Li, G.R. Wang, Y.C. Liu, Mater. Chem. Phys. 106, 305 (2007)

    Article  Google Scholar 

  10. Z. Wang, Mater. Sci. Eng., R 64, 33 (2009)

    Article  Google Scholar 

  11. W. Yu, C. Pan, Mater. Chem. Phys. 115, 74 (2009)

    Article  Google Scholar 

  12. A. Ishizumi, Y. Takahashi, A. Yamamoto, Y. Kanemitsu, Mater. Sci. Eng., B 146, 212 (2008)

    Article  Google Scholar 

  13. P. Mohanty, B. Kim, J. Park. Mater. Sci. Eng. B. 138, 224 (2007)

    Article  Google Scholar 

  14. C. Panatarani, I.W. Lenggoro, K. Okuyama, J. Phys. Chem. Solids 65, 1843 (2004)

    Article  ADS  Google Scholar 

  15. P. Che, J. Meng, L. Guo, J. Lumin. 122, 168 (2007)

    Article  Google Scholar 

  16. P.G. Kik, A. Polman, Mater. Res. Soc. Bull. 23, 48 (1998)

    Article  Google Scholar 

  17. B. Weintraub, Z. Zhou, Y. Li, Y. Deng, Nanoscale. 2, 1573 (2010)

    Article  ADS  Google Scholar 

  18. M.A. Lim, S.I. Seok, I.H. Seok, Thin Solid Films 515, 2423 (2006)

    Article  ADS  Google Scholar 

  19. X. Meng, C. Liu, F. Wua, J. Li, J. Colloid Interface Sci. 358, 334 (2011)

    Article  Google Scholar 

  20. T. Schmidt, L. Spanhel, G. Muller, K. Kerkel, A. Forchel, Chem. Mater. 10, 65 (1998)

    Article  Google Scholar 

  21. M. Kohls, T. Schmidt, H. Katschorek, L. Spanhel, G. Muller, N. Mais, A. Wolf, A. Forchel, Adv. Mater. 11, 288 (1999)

    Article  Google Scholar 

  22. Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, Q. Zeng, Y. Zhang, H. Zhang, J. Lumin. 128, 15 (2008)

    Article  Google Scholar 

  23. W.C. Yang, C.W. Wang, J.H. He, Y.C. Chang, J.C. Wang, L.J. Chen, H.Y. Chen, S. Gwo, Phys. Stat. Sol. A. 205, 1190 (2008)

    Article  ADS  Google Scholar 

  24. M. Xiuqing, L. Chaoren, W. Fengmina, L. Jingbo, J. Colloid Interface Sci. 358, 334–337 (2011)

    Article  Google Scholar 

  25. C. Bingqiang, C. Weiping, J. Phys. Chem. C 112, 680–685 (2008)

    Article  Google Scholar 

  26. C. Dewei, L. Sean. N. J. G. C. 2, 13–16 (2012)

  27. Z. Jun, S. Lingdong, Y. Jialu, S. Huilan, L. Chunsheng, Y. Chunhua, Chem. Mater. 14, 4172–4177 (2002)

    Article  Google Scholar 

  28. C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, J. Appl. Phys. 105, 013502 (2009)

    Article  ADS  Google Scholar 

  29. C. Wu, X. Qiao, L. Luo, L. Li, Mater. Res. Bull. 43, 1883–1891 (2009)

    Article  Google Scholar 

  30. Z. Wenqiang, V. Cindy, A.M. Jeremio, S. Maxim, Nat. Photonics 6, 560–564 (2012)

    Article  Google Scholar 

  31. M.V. Shestakov, V.K. Tikhomirov, D. Kirilenko, A.S. Kuznetsov, L.F. Chibotaru, A.N. Baranov, G. Van Tendeloo, V.V. Moshchalkov, Opt. Express 19, 15955–15964 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author Reza Zamiri would like to express his personal thanks to FCT (Fundação para a Ciência e a Tecnologia) for post-doctoral research grant with reference numbers (SFRH/BPD/76185/2011). The support from CICECO is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Zamiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamiri, R., Rebelo, A., Poor, H.R.B. et al. Quantum cutting effect and photoluminescence emission at about 1,000 nm from Er–Yb co-doped ZnO nanoplates prepared by wet chemical precipitation method. Appl. Phys. A 117, 2289–2294 (2014). https://doi.org/10.1007/s00339-014-8664-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8664-0

Keywords

Navigation