Skip to main content
Log in

Microwave plasma CVD-grown graphene–CNT hybrids for enhanced electron field emission applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The growth and electron emission characteristics were investigated from a hybrid structure of multiwalled carbon nanotubes (MWCNTs) and multilayer layer graphene (MLG) deposited on silicon substrate coated with iron catalyst and an interlayer of aluminium. The hybrid structures were synthesized in a two-step process by microwave plasma-enhanced chemical vapour deposition technique. The formation of MWCNTs takes place by absorption and precipitation of carbon radicals into the catalyst particles. Thereafter, ample carbon forms MLG on tip of the MWCNTs resulting in a MLG-MWCNTs hybrid nanostructure. MLG was observed to grow branching out of the tips and sidewalls of the MWCNTs and is expected to attach by Van der Walls bonds. Transmission electron microscopy and micro-Raman spectroscopy confirmed the crystalline nature of the hybrid structures. Electron emission studies were carried out using a diode-type field emission setup. The enhancement factor was found to be ~3,500 for bare MWCNTs, ~4,070 to ~5,000 for hybrid structures and ~6,500 for N-doped MLG-MWCNTs hybrid structures. Modification in the defects structure and enhancement of emission sites are suggested to be responsible for the increase of the field emission characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, R.P.H. Chang, Appl. Phys. Lett. 72, 2912–2913 (1998)

    Article  ADS  Google Scholar 

  2. C. Nützenadel, A. Züttel, D. Chartouni, L. Schlapbach, Electrochem. Solid State Lett. 2, 30–32 (1999)

    Article  Google Scholar 

  3. J. Opatkiewicz, M.C. LeMieux, Z. Bao, ACS Nano 4, 2975–2978 (2010)

    Article  Google Scholar 

  4. J. Wang, Electroanalysis 17, 7–14 (2004)

    Article  Google Scholar 

  5. Y. Sui, J. Appenzeller, Nano Lett. 9, 2973–2977 (2009)

    Article  ADS  Google Scholar 

  6. M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, G TrAC Trends Anal. Chem. 29, 954–965 (2010)

    Article  Google Scholar 

  7. L. Ji, Z. Tan, T. Kuykendall, E.J. An, Y. Fu, V. Battaglia et al., Energy Environ. Sci. 4, 3611–3616 (2011)

    Article  Google Scholar 

  8. Y.S. Kim, K. Kumar, F.T. Fisher, E.H. Yang, Nanotechnology 23, 015301 (2011)

    Article  ADS  Google Scholar 

  9. D. Yu, L. Dai, J. Phys. Chem. Lett. 1, 467–470 (2009)

    Article  Google Scholar 

  10. K. Yu, G. Lu, Z. Bo, S. Mao, J. Chen, J. Phys. Chem. Lett. 2, 1556–1562 (2011)

    Article  Google Scholar 

  11. H.X. Wang, N. Jiang, H. Zhang, A. Hiraki, R.A. Bu, Mater. Lett. 65, 78–81 (2011)

    Article  Google Scholar 

  12. A.N. Obraztsov, A.A. Zakhidov, A.P. Volkov, D.A. Lyashenko, Diam. Relat. Mater. 12, 446–449 (2003)

    Article  ADS  Google Scholar 

  13. W.I. Milne, K.B.K. Teo, G.A.J. Amaratunga, P. Legagneux, L. Gangloff, J.-P. Schnell et al., J. Mater. Chem. 14, 933–943 (2004)

    Article  Google Scholar 

  14. O. Groning, O.M. Kuttel, P. Groning, L. Schlapbach, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 17, 1970–1986 (1999)

    Article  ADS  Google Scholar 

  15. J. Deng, R. Zheng, Y. Zhao, G. Cheng, ACS Nano 6, 3727–3733 (2012)

    Article  Google Scholar 

  16. J. Deng, R. Zheng, Y. Yang, Y. Zhao, G. Cheng, Carbon 50, 4732–4737 (2012)

  17. D.H. Lee, J.A. Lee, W.J. Lee, D.S. Choi, W.J. Lee, S.O. Kim, J. Phys. Chem. C 114, 21184–21189 (2010)

    Article  Google Scholar 

  18. D.H. Lee, J.A. Lee, W.J. Lee, Small 7, 95–100 (2011)

    Article  ADS  Google Scholar 

  19. J.Y. Huang, K. Kempa, S.H. Jo, S. Chen, Z.F. Ren, Appl. Phys. Lett. 87, 053110–053113 (2005)

  20. S. Santandrea, F. Giubileo, V. Grossi, S. Santucci, M. Passacantando, T. Schroeder et al., Appl. Phys. Lett. 98, 163109–163111 (2011)

  21. S.K. Srivastava, A.K. Shukla, V.D. Vankar, V. Kumar, Thin Solid Films 492, 124–130 (2005)

    Article  ADS  Google Scholar 

  22. Y. Murakami, S. Maruyama, Chem. Phys. Lett. 422, 575–580 (2006)

    Article  ADS  Google Scholar 

  23. H. Sharma, A.K. Shukla, V.D. Vankar, J. Mater. Chem. Phys. 137, 802–810 (2013)

    Article  Google Scholar 

  24. P.E. Nolan, D.C. Lynch, A.H. Cutler, J. Phys. Chem. B 102, 4165–4175 (1998)

    Article  Google Scholar 

  25. L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B. Chen, J. Han et al., J. Appl. Phys. 91, 6027 (2002)

    Article  ADS  Google Scholar 

  26. M.S. Dresselhaus, A. Jorio, R. Saito, Annu. Rev. Condens Matter Phys. 1, 89–108 (2010)

    Article  ADS  Google Scholar 

  27. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10, 751–758 (2010)

    Article  ADS  Google Scholar 

  28. L.I. Maissel, R. Glang, Handbook of thin film technology (McGraw-Hill, New York, 1970)

    Google Scholar 

  29. S.K. Srivastava, V.D. Vankar, D.V. Sridhar Rao, V. Kumar, Thin Solid Films 515, 1851–1856 (2006)

    Article  ADS  Google Scholar 

  30. A. Malesevic, S. Vizireanu, R. Kemps, A. Vanhulsel, C.V. Haesendonck, G. Dinescu, Carbon 45, 2932–2937 (2007)

    Article  Google Scholar 

  31. D.S. Knight, W.B. White, J. Mater. Res. 4, 385–393 (1989)

    Article  ADS  Google Scholar 

  32. R.G. Forbes, Nanotechnology 23, 095706 (2012)

    Article  ADS  Google Scholar 

  33. R.G. Forbes, J.H.B. Deane, Proc. R Soc. A 467, 2927–2947 (2011)

    Article  ADS  MATH  Google Scholar 

  34. R.G. Forbes, A. Fischer, M.S. Mousa, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 31, 02B103 (2013)

    Google Scholar 

  35. C.Y. Zhi, X.D. Bai, E.G. Wang, Appl. Phys. Lett. 81, 1690–1692 (2002)

    Article  ADS  Google Scholar 

  36. H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle et al., J. Phys. Chem. B 103, 8116–8121 (1999)

    Article  Google Scholar 

  37. J. Zhang, X. Wang, W. Yang, W. Yu, T. Feng, Q. Li et al., Carbon 44, 418–422 (2006)

    Article  Google Scholar 

  38. J.M. Bonard, J.P. Salvetat, T. Stockli, W.A. de Heer, L. Forró, A. Châtelain, Appl. Phys. Lett. 73, 918–920 (1998)

    Article  ADS  Google Scholar 

  39. M. Park, B.A. Cola, T. Siegmund, J. Xu, M.R. Maschmann, T.S. Fisher et al., Nanotechnology 17, 2294 (2006)

    Article  ADS  Google Scholar 

  40. M. Arif, K. Heo, B.Y. Lee, J. Lee, D.H. Seo, S. Seo et al., Nanotechnology 22, 355709 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (V. K.) is thankful to the director of IIT Delhi for providing a research scholarship. Authors are grateful to Dr. D. C. Sharma for SEM studies. The financial support of the Ministry of Information Technology (MIT), Government of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Vankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, V., Shukla, A.K. & Vankar, V.D. Microwave plasma CVD-grown graphene–CNT hybrids for enhanced electron field emission applications. Appl. Phys. A 117, 2197–2205 (2014). https://doi.org/10.1007/s00339-014-8646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8646-2

Keywords

Navigation