Skip to main content
Log in

Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc–cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge–discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g−1 at a current density of 1.0 A g−1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Markoulidis, C. Lei, C. Lekakou, Appl. Phys. A doi:10.1007/s00339-012-7471-8

  2. S.G. Kandalkar, J.L. Gunjakar, C.D. Lokhande, Appl. Surf. Sci. 254, 5540 (2008)

    Article  ADS  Google Scholar 

  3. T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Belanger, Appl. Phys. A 82, 599 (2006)

    Article  ADS  Google Scholar 

  4. Y. Gao, S. Chen, D. Cao, G. Wang, J. Yin, J. Power Sources 195, 1757 (2010)

    Article  Google Scholar 

  5. W.C. Li, G.Z. Nong, A.H. Lu, H.Q. Hu, J. Porous Mater. 18, 23 (2011)

    Article  Google Scholar 

  6. W. Kim, M.Y. Kang, J.B. Joo, N.D. Kim, I.K. Song, P. Kim, J.R. Yoon, J. Yi, J. Power Sources 195, 2125 (2010)

    Article  Google Scholar 

  7. F. Gobal, M. Faraji, J. Electroanal. Chem. 691, 51 (2013)

    Article  Google Scholar 

  8. Y. Xie, D. Fu, Mater. Chem. Phys. 122, 23 (2010)

    Article  Google Scholar 

  9. Y. Wang, H. Wang, X. Wang, Electrochim. Acta 92, 298 (2013)

    Article  Google Scholar 

  10. R. Tummala, R.K. Guduru, P.S. Mohanty, J. Power Sources 209, 44 (2012)

    Article  Google Scholar 

  11. R.P. Antony, T. Mathews, S. Dash, A.K. Tyagi, B. Raj, Mater. Chem. Phys. 132, 957 (2012)

    Article  Google Scholar 

  12. I. Herraiz-Cardona, E. Ortega, V. Pérez-Herranz, Electrochim. Acta 56, 1308 (2011)

    Article  Google Scholar 

  13. D.K. Pawar, J.S. Shaikh, B.S. Pawar, S.M. Pawar, P.S. Patil, S.S. Kolekar, J. Porous Mater. 19, 649 (2012)

    Article  Google Scholar 

  14. Y. Li, K. Huang, S. Liu, Z. Yao, S. Zhuang, J. Solid State Electrochem. 15, 587 (2011)

    Article  Google Scholar 

  15. Y.Q. Zhang, X.H. Xia, J. Kang, J.P. Tu, Chin. Sci. Bull. 57, 32 (2012)

    Google Scholar 

  16. D. Kalpana, K.S. Omkumar, S. Suresh Kumar, N.G. Renganathan, Electrochim. Acta 52, 1309 (2006)

    Article  Google Scholar 

  17. M. Selvakumar, D. Krishna Bhat, A. Manish Aggarwal, S. PrahladhIyer, G. Sravani, Phys. B 405, 2286 (2010)

    Article  ADS  Google Scholar 

  18. N. Padmanathan, S. Selladurai, Ionics 20, 409 (2014)

    Article  Google Scholar 

  19. N. Padmanathan, S. Selladurai, Ionics 20, 479 (2014)

    Article  Google Scholar 

  20. X. Wang, S. Liu, H. Wang, F. Tu, D. Fang, Y. Li, J. Solid State Electrochem. 16, 3593 (2012)

    Article  Google Scholar 

  21. K.S. Kim, S.J. Park, J. Solid State Electrochem. 16, 2751 (2012)

    Article  Google Scholar 

  22. Y.F. Li, Y.Z. Liu, Y.G. Yang, M.Z. Wang, Y.F. Wen, Appl. Phys. A 108, 701 (2012)

    Article  ADS  Google Scholar 

  23. C. Xia, Y. Xie, Y. Wang, W. Wang, H. Du, F. Tian, J. Appl. Electrochem. 43, 1225 (2013)

    Article  Google Scholar 

  24. T.C. Girija, M.V. Sangaranarayanan, J. Power Sources 156, 705 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express thanks to the office of vice chancellor of research of Sharif University of Technology for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Faraji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobal, F., Faraji, M. Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors. Appl. Phys. A 117, 2087–2094 (2014). https://doi.org/10.1007/s00339-014-8623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8623-9

Keywords

Navigation