Skip to main content
Log in

Robust plasmonic substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Robustness is a key issue for the applications of plasmonic substrates such as tip-enhanced Raman spectroscopy, surface-enhanced spectroscopies, enhanced optical biosensing, optical and optoelectronic plasmonic nanosensors and others. A novel approach for the fabrication of robust plasmonic substrates is presented, which relies on the coverage of gold nanostructures with diamond-like carbon (DLC) thin films of thicknesses 25, 55 and 105 nm. DLC thin films were grown by direct hydrocarbon ion beam deposition. In order to find the optimum balance between optical and mechanical properties of the considered robust plasmonic substrates, nanoindentation and wear resistance experiments as well as ablation experiment were performed. The mechanical properties of the layered substrates are tested via atomic force microscopy, evaluating spatially resolved threshold loads both for plastic deformation and breaking. DLC coating with thicknesses between 25 and 105 nm is found to considerably increase the mechanical strength of the substrates while at the same time ensuring conservation of sufficient field enhancements of the gold plasmonic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Chung, S.-Y. Lee, E.Y. Song, H. Chun, B. Lee, Sensors 11(11), 10907–10929 (2011). doi:10.3390/s111110907

    Article  Google Scholar 

  2. J.-C. Weeber, K. Hassan, M.G. Nielsen, A. Pitilakis, O. Tsilipakos, E.E. Kriezis, J. Fatome, C. Finot, L. Markey, O. Albrektsen, S.I. Bozhevolnyi, A. Dereux, Proc. SPIE 8424, 842407 (2012)

    Article  Google Scholar 

  3. M.I. Stockman, Opt. Express 19(22), 22029–22106 (2011)

    Article  ADS  Google Scholar 

  4. C.J. Fredricksen, D.R. Panjwani, J.P. Arnold, P.N. Figueiredo, F.K. Rezaie, J.E. Colwell, K. Baillie, R.E. Peale, S.J. Peppernick, A.G. Joly, K.M. Beck, W.P. Hess, Proc. SPIE 8111, 811106 (2011). doi:10.1117/12.893620

    Article  Google Scholar 

  5. J.A. Schuller, E. Barnard, W. Cai, Y.C. Jun, J. White, M.L. Brongersma, Nat. Mater. 9, 193–204 (2010)

    Article  ADS  Google Scholar 

  6. J. Fiutowski, C. Maibohm, O. Kostiučenko, A. Osadnik, A. Lützen, H-G. Rubahn, Proceedings of SPIE 8424, Nanophotonics IV, 84242H (2012)

  7. K. Fukami, M.L. Chourou, R. Miyagawa, A.M. Noval, T. Sakka, M. Manso-Silvan, R.J. Martin-Palma, Y.H. Ogata, Materials 4(4), 791–800 (2011). doi:10.3390/ma4040791

    Article  ADS  Google Scholar 

  8. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R.P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio, Nat. Photonics 5, 682–687 (2011)

    Article  ADS  Google Scholar 

  9. P. Biagioni, J.S. Huang, B. Hecht, Rep. Prog. Phys. 75, 024402 (2012)

    Article  ADS  Google Scholar 

  10. V. Kumar, H. Wang, Org. Electron. 14, 560–568 (2013)

    Article  Google Scholar 

  11. A. Erdemir, Tribol. Int. 37, 1005–1012 (2004)

    Article  Google Scholar 

  12. A. Tamulevičienė, Š. Meškinis, V. Kopustinskas, S. Tamulevičius, Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. 282(1), 116–120 (2012)

  13. J. Fiutowski, C. Maibohm, O. Kostiučenko, J. Kjelstrup-Hansen, H.-G. Rubahn, J. Nanophotonics 6(1), 063515 (2012)

    Article  Google Scholar 

  14. J. Fiutowski, C. Maibohm, J. Kjelstrup-Hansen, H.-G. Rubahn, Appl. Phys. Lett. 98(19), 193117 (2011)

    Article  ADS  Google Scholar 

  15. A. Hohenau, J.R. Krenn, F. Garcia-Vidal, S.G. Rodrigo, L. Martin-Moreno, J. Beermann, S.I. Bozhevolnyi, Phys. Rev. B 75(8), 085104–085108 (2007)

    Article  ADS  Google Scholar 

  16. B. Cappella, D. Silbernagl, Langmuir 23, 10779–10787 (2007)

    Article  Google Scholar 

  17. D. Silbernagl, H. Sturm, B. Cappella, Langmuir 25, 5091–5097 (2009)

    Article  Google Scholar 

  18. F. Gao, A. Erdemir, W.T. Tysoe, Tribol. Lett. 20(3–4), 221–227 (2005)

    Article  Google Scholar 

  19. A. Ata, Y.I. Rabinovich, R.K. Singh, J. Adhes. Sci. Technol. 16(4), 337–346 (2002)

    Article  Google Scholar 

  20. S. Achanta, D. Drees, J.-P. Celis, ). Wear 263, 1390–1396 (2007)

    Article  Google Scholar 

  21. A. Grill, Diam. Relat. Mater. 8, 428–434 (1999)

    Article  ADS  Google Scholar 

  22. S. Miyake, M. Komiya, T. Shindo, Tribol. Lett. 46, 1–9 (2007)

    Article  Google Scholar 

  23. J.D. Pearson, M.A. Zikry, K.J. Wahl, Wear 266, 1003–1012 (2009)

    Article  Google Scholar 

  24. R. Paul, S.R. Bhattacharyya, R. Bhar, A.K. Pal, Appl. Surf. Sci. 257, 10451–10458 (2011)

    Article  ADS  Google Scholar 

  25. G.A. Tritsaris, C. Mathioudakis, P.C. Kelires, E. Kaxiras, J. Appl. Phys. 112, 103503 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Danish Council for Independent Research (FTP project ANAP, contract no. 09-072949) as well as by the German Science Foundation through various grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Kostiučenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostiučenko, O., Fiutowski, J., Tamulevičius, T. et al. Robust plasmonic substrates. Appl. Phys. A 116, 151–159 (2014). https://doi.org/10.1007/s00339-014-8520-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8520-2

Keywords

Navigation