Skip to main content
Log in

Tip-based nanoscale selective growth of discrete silicon nanowires by near-field laser illumination

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Growth of discrete silicon nanowires is reported with nanoscale location selectivity by employing near-field laser illumination. An uncoated dielectric atomic force microscope (AFM) tip provides a nanometer-scale light source that is sufficiently localized to induce nucleation and subsequent growth of a single nanowire under its optical near-field. Far-field laser-induced heating is additionally supplied to the substrate to both relieve the required near-field light budget and also assist stable epitaxial growth. Specific catalysts are selected for the nanowire growth by non-contact mode AFM imaging. Through real-time monitoring of the deflection of the AFM cantilever during the growth process, the gap between the tip and the sample and hence truly near-field illumination are maintained throughout the growth process. The study shows that tip-based near-field laser illumination could be an effective tool for the direct integration of semiconductor nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89–90 (1964)

    Article  ADS  Google Scholar 

  2. P.J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P.D. Yang, J. Liphardt, Nat. Mater. 5, 97–101 (2006)

    Article  ADS  Google Scholar 

  3. A. Jamshidi, P.J. Pauzauskie, P.J. Schuck, A.T. Ohta, P.-Y. Chiou, J. Chou, P.D. Yang, M.C. Wu, Nat. Photonics 2, 85–89 (2008)

    Article  ADS  Google Scholar 

  4. L. Cao, D.N. Barsic, A.R. Guichard, M.L. Brongersma, Nano Lett. 7, 3523–3527 (2007)

    Article  ADS  Google Scholar 

  5. D.J. Hwang, S.-G. Ryu, E. Kim, C.P. Grigoropoulos, C. Carraro, Appl. Phys. Lett. 99, 123109 (2011)

    Article  ADS  Google Scholar 

  6. S. Link, M.A. El-Sayed, Int. Rev. Phys. Chem. 19, 409–453 (2000)

    Article  Google Scholar 

  7. D.J. Hwang, S.-G. Ryu, C.P. Grigoropoulos, Nanotechnology 22, 385303 (2011)

    Article  ADS  Google Scholar 

  8. S.-G. Ryu, E. Kim, J.-H. Yoo, D.J. Hwang, B. Xiang, O.D. Dubon, A.M. Minor, C.P. Grigoropoulos, ACS Nano 7, 2090–2098 (2013)

    Article  Google Scholar 

  9. B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, D.W. Pohl, J. Chem. Phys. 112, 7761–7774 (2000)

    Article  ADS  Google Scholar 

  10. F. Zenhausern, Y. Martin, H.K. Wickramasinghe, Science 269, 1083–1085 (1995)

    Article  ADS  Google Scholar 

  11. E. Betzig, P.L. Finn, J.S. Weiner, Appl. Phys. Lett. 60, 2484–2486 (1992)

    Article  ADS  Google Scholar 

  12. G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J.C. Meiners, J. Mlynek, Opt. Commun. 119, 283–288 (1995)

    Article  ADS  Google Scholar 

  13. A. Chimmalgi, D.J. Hwang, C.P. Grigoropoulos, Nano Lett. 5, 1924–1930 (2005)

    Article  ADS  Google Scholar 

  14. G. Wysocki, J. Heitz, D. Bäuerle, Appl. Phys. Lett. 84, 2025–2027 (2004)

    Article  ADS  Google Scholar 

  15. H. Diesinger, A. Bsiesy, R. Herino, J. Appl. Phys. 90, 4862–4864 (2001)

    Article  ADS  Google Scholar 

  16. Y. Yamamoto, M. Kourogi, M. Ohtsu, V. Polonski, G.H. Lee, Appl. Phys. Lett. 76, 2173–2175 (2000)

    Article  ADS  Google Scholar 

  17. D.W. Pohl, in Advances in Optical and Electron Microscopy, vol 12, ed. by C.J.R. Sheppard, T. Mulvey (Academic Press, London, 1990), p. 243

  18. N.F. van Hulst, M.H.P. Moers, O. Noordman, T. Faulkner, F.B. Segerink, K.O. van der Werf, B.G. de Grooth, B. Bolger, Proc. SPIE 1639, 36–43 (1992)

    Article  ADS  Google Scholar 

  19. H. Schmid, M.T. Bjoerk, J. Knoch, H. Riel, W. Riess, P. Rice, T. Topuria, J. Appl. Phys. 103, 024304 (2008)

    Article  ADS  Google Scholar 

  20. K.K. Lew, J.M. Redwing, J. Cryst. Growth 254, 14–22 (2003)

    Article  ADS  Google Scholar 

  21. J. Lai, T. Perazzo, Z. Shi, A. Majumdar, Sens. Actuators A 58, 113–119 (1997)

    Article  Google Scholar 

  22. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P.K. Hansma, M. Longmire, J. Gurley, J. Appl. Phys. 65, 164–167 (1989)

    Article  ADS  Google Scholar 

  23. D.J. Hwang, A. Chimmalgi, C.P. Grigoropoulos, J. Appl. Phys. 99, 044905–044916 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support by DARPA/MTO under Grant N66001-08-1-2041. SEM analysis performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, was supported by the Scientific User Facilities Division of the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas P. Grigoropoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, Sg., Hwang, D.J., Kim, E. et al. Tip-based nanoscale selective growth of discrete silicon nanowires by near-field laser illumination. Appl. Phys. A 116, 51–58 (2014). https://doi.org/10.1007/s00339-014-8480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8480-6

Keywords

Navigation