Skip to main content
Log in

Low-temperature photo-activated inorganic electron transport layers for flexible inverted polymer solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A simple and versatile route of forming sol–gel-derived metal oxide n-type electron transport layers (ETLs) for flexible inverted polymer solar cells (PSCs) is proposed using low-temperature photochemical activation process. The photochemical activation, which is induced by deep ultraviolet irradiation on sol–gel films, allows formation of metal oxide n-type ETLs such as zinc oxide (ZnO) and indium gallium zinc oxide films at a low temperature. Compared to poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester inverted PSCs with thermally annealed ZnO ETLs (optimized efficiency of 3.26 ± 0.03 %), the inverted PSCs with photo-activated ZnO ETLs showed an improved efficiency of 3.60 ± 0.02 %. The enhanced photovoltaic property is attributed to efficient charge collection from low overall series resistance and high surface area-to-geometric area ratio by the photo-activated ZnO ETLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)

    Article  ADS  Google Scholar 

  2. P. Peumans, A. Yakimov, S.R. Forrest, J. Appl. Phys. 93, 3693 (2003)

    Article  ADS  Google Scholar 

  3. S. Guenes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1324 (2007)

    Article  Google Scholar 

  4. A. Facchetti, Chem. Mater. 23, 733 (2011)

    Google Scholar 

  5. R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Mater. Today 15, 36 (2012)

    Google Scholar 

  6. F. Liu, Y. Gu, C. Wang, W. Zhao, D. Chen, A.L. Briseno, T.P. Russell, Adv. Mater. 24, 3947 (2012)

    Google Scholar 

  7. L. Bian, E. Zhu, J. Tang, W. Tang, F. Zhang, Prog. Polym. Sci. 37, 1292 (2012)

    Google Scholar 

  8. H. Zhong, Z. Li, F. Deledalle, E.C. Fregoso, M. Shahid, Z. Fei, C.B. Nielsen, N. Yaacobi-Gross, S. Rossbauer, T.D. Anthopoulos, J.R. Durrant, M. Heeney, J. Am. Chem. Soc. 135, 2040 (2013)

    Google Scholar 

  9. H.-L. Yip, A.K.-Y. Jen, Energy Environ. Sci. 5, 5994 (2012)

    Google Scholar 

  10. Q. Gan, F.J. Bartoli, Z.H. Kafafi, Adv. Mater. 25, 2385 (2013)

    Google Scholar 

  11. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, Y. Yang, Nature Comm. 4, 1446 (2013)

    ADS  Google Scholar 

  12. J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A.J. Heeger, Science 317, 222 (2007)

    ADS  Google Scholar 

  13. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Nat. Photon. 6, 180 (2012)

    ADS  Google Scholar 

  14. W. Li, A. Furlan, K.H. Hendriks, M.M. Wienk, R.A.J. Janssen, J. Am. Chem. Soc. 135, 5529 (2013)

    Google Scholar 

  15. M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Adv. Mater. 24, 580 (2012)

    Google Scholar 

  16. R.R. Søndergaard, T. Makris, P. Lianos, A. Manor, E.A. Katz, W. Gong, S.M. Tuladhar, J. Nelson, R. Tuomi, P. Sommeling, S.C. Veenstra, A. Rivaton, A. Dupuis, G. Teran-Escobar, M. Lira-Cantu, S.B. Sapkota, B. Zimmermann, U. Würfel, A. Matzarakis, F.C. Krebs, Sol. Energy Mater. Sol. Cells 99, 292 (2012)

    Google Scholar 

  17. S. Sanchez, S. Berson, S. Guillerez, C. Lévy-Clément, V. Ivanova, Adv. Eng. Mater. 2, 541 (2012)

    Google Scholar 

  18. G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, Appl. Phys. Lett. 88, 253503 (2006)

    ADS  Google Scholar 

  19. C.E. Small, S. Chen, J. Subbiah, C.M. Amb, S.-W. Tsang, T.-H. Lai, J.R. Reynolds, F. So, Nat. Photon. 6, 115 (2012)

    ADS  Google Scholar 

  20. S.M. Yoon, S.J. Lou, S. Loser, J. Smith, L.X. Chen, A. Facchetti, T. Marks, Nano Lett. 12, 6315 (2012)

    ADS  Google Scholar 

  21. A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, Appl. Phys. Lett. 93, 221107 (2008)

    ADS  Google Scholar 

  22. Y. Sun, J.H. Seo, C.J. Takacs, J. Seifer, A.J. Heeger, Adv. Mater. 23, 1679 (2011)

    Google Scholar 

  23. T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G.J. Matt, M. Halik, C.J. Brabec, J. Mater. Chem. A 1, 6004 (2013)

    Google Scholar 

  24. C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S.A. Choulis, C.J. Brabec, Appl. Phys. Lett. 89, 233517 (2006)

    ADS  Google Scholar 

  25. T.Z. Oo, R.D. Chandra, N. Yantara, R.R. Prabhakar, L.H. Wong, N. Mathews, S.G. Mhaisalkar, Org. Electron. 13, 870 (2012)

    Google Scholar 

  26. S. Murase, Y. Yang, Adv. Mater. 24, 2459 (2012)

    Google Scholar 

  27. H. Cheun, J. Kim, Y. Zhou, Y. Fang, A. Dindar, J. Shim, C. Fuentes-Hernandez, K.H. Sandhage, B. Kippelen, Opt. Express 18, A506 (2010)

    Google Scholar 

  28. Y.H. Kim, J.S. Heo, T.H. Kim, S. Park, M.H. Yoon, J. Kim, M.S. Oh, G.R. Yi, Y.Y. Noh, S.K. Park, Nature 489, 128 (2012)

    ADS  Google Scholar 

  29. J.D. Servaites, S. Yeganeh, T.J. Marks, M.A. Ratner, Adv. Funct. Mater. 20, 97 (2010)

    Google Scholar 

  30. S.K. Hau, H.L. Yip, O. Acton, N.S. Baek, H. Ma, A.K.Y. Jen, J. Mater. Chem. 18, 5113 (2008)

    Google Scholar 

  31. A. Guerrero, T. Ripolles-Sanchis, P.P. Boix, G. Garcia-Belmonte, Org. Electron. 13, 2326 (2012)

    Google Scholar 

  32. J.B. Kim, P. Kim, N.C. Pégard, S. Ju Oh, C.R. Kagan, J.W. Fleischer, H.A. Stone, Y.-L. Loo, Nat Photon 6, 327 (2012)

    ADS  Google Scholar 

  33. N. Sekine, C.-H. Chou, W.L. Kwan, Y. Yang, Org. Electron. 10, 1473 (2009)

    Google Scholar 

  34. H. Liu, F. Zeng, Y. Lin, G. Wang, F. Pan, Appl. Phys. Lett. 102, 181908 (2013)

    Google Scholar 

  35. Y.J. Noh, S.S. Kim, T.W. Kim, S.I. Na, Semicond. Sci. Technol. 28, 125008 (2013)

    ADS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2013R1A2A2A01006404) and the Inter-ER Cooperation Projects of Korea Institute for Advancement of Technology (KIAT) funded by the Ministry of Knowledge Economy (MKE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Hoon Kim or Sung Kyu Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JW., Lee, SH., Kim, YH. et al. Low-temperature photo-activated inorganic electron transport layers for flexible inverted polymer solar cells. Appl. Phys. A 116, 2087–2093 (2014). https://doi.org/10.1007/s00339-014-8407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8407-2

Keywords

Navigation