Skip to main content
Log in

Fabrication of Co-doped ZnO nanowires and their temperature-dependent ultraviolet emission properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Co-doped ZnO nanowires have been fabricated through a high temperature vapor–solid deposition process. The temperature-dependent ultraviolet emission properties of Co-doped ZnO nanowires under 10–300 K were reported. The results show that there are multipeak emissions situated at the ultraviolet region. The investigation of the excitonic transition in Co-doped ZnO nanowires shows that there is an intensive ultraviolet periodic emission of Co-doped ZnO nanowires under low temperature. The oscillatory structure has an energy periodicity about 70 meV. The oscillatory structure is mainly attributed to the longitudinal optical phonon replicas of the free exciton. The ultraviolet emission shows an obvious redshift with the increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z.L. Wang, Mater. Sci. Eng. R 64, 33 (2009)

    Google Scholar 

  2. C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, H. Shen, J. Appl. Phys. 85, 2595 (1999)

    ADS  Google Scholar 

  3. T. Shibata, K. Unno, E. Makino, Y. Ito, S. Shimada, Sens. Actuators A 102, 106 (2002)

    Google Scholar 

  4. S.C. Minne, S.R. Manalis, C.F. Quate, Appl. Phys. Lett. 67, 3918 (1995)

    ADS  Google Scholar 

  5. H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang, Adv. Mater. 14, 158 (2002)

    Google Scholar 

  6. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)

    ADS  Google Scholar 

  7. Z.L. Wang, J. Phys. Condens. Mater. 16(R829) 2004

  8. J. Zhong, S. Muthukumar, Y. Chen, Y. Lua, H.M. Ng, W. Jiang, E.L. Garfunkel, Appl. Phys. Lett. 83, 3401 (2003)

    ADS  Google Scholar 

  9. H.J. Choi, H.K. Seong, J.Y. Chang, K. Lee, Y.J. Park, J.J. Kim, S.K. Lee, R.R. He, T. Kuykendall, P.D. Yang, Adv. Mater. 17, 1351 (2005)

    Google Scholar 

  10. G.F. Zheng, W. Lu, S. Jin, C.M. Lieber, Adv. Mater. 16, 1890 (2004)

    Google Scholar 

  11. J.G. Wen, J.Y. Lao, D.Z. Wang, T.M. Kyaw, Y.L. Foo, Z.F. Ren, Chem. Phys. Lett. 372, 717 (2003)

    ADS  Google Scholar 

  12. C. Li, D.H. Zhang, B. Lei, S. Han, X.L. Liu, C.W. Zhou, J. Phys. Chem. B 107, 12451 (2003)

    Google Scholar 

  13. S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, C.J. Huang, J. Phys. D 37, 2274 (2004)

    ADS  Google Scholar 

  14. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    ADS  Google Scholar 

  15. K. Sato, H. Katayama-Yoshida, Phys. E (Amsterdam) 10, 251 (2001)

    Google Scholar 

  16. Y. Nakayama, P.J. Pauzauskie, A. Radenovic, R.M. Onorato, R.J. Saykally, J. Liphardt, P.D. Yang, Nature (London) 447(1098), (2007)

  17. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T Steiner. Prog. Mater Sci. 50, 293 (2005)

    Google Scholar 

  18. S.N. Cha, J.E. Jang, Y. Choi, G.A.J. Amaratunga, G.W. Ho, M.E. Welland, D.G. Hasko, D.J. Kang, J.M. Kim, Appl. Phys. Lett. 89, 263102 (2006)

    ADS  Google Scholar 

  19. Z.L. Wang, Adv. Mater. 19, 889 (2007)

    Google Scholar 

  20. Z.L. Wang, Mater. Today 10, 20 (2007)

    Google Scholar 

  21. V.A.L. Roy, A.B. Djurisic, H. Liu, X.X. Zhang, Y.H. Leung, M.H. Xie, J. Gao, H.F. Lui, C. Surya, Appl. Phys. Lett. 84, 756 (2004)

    ADS  Google Scholar 

  22. X.M. Zhang, Y. Zhang, Z.L. Wang, W.J. Mai, Y.D. Gu, W.S. Chu, Z.Y. Wu, Appl. Phys. Lett. 92, 162102 (2008)

    ADS  Google Scholar 

  23. X.M. Zhang, W.J. Mai, Y. Zhang, Y. Ding, Z.L. Wang, Solid State Commun. 149, 293 (2009)

    ADS  Google Scholar 

  24. J.H. He, C.S. Lao, L.J. Chen, D. Davidovic, Z.L. Wang, J. Am. Chem. Soc. 127, 16376 (2005)

    Google Scholar 

  25. L. Armelao, F. Heigl, A. Jürgensen, R.I.R. Blyth, T. Regier, X.-T. Zhou, T.K. Sham, J. Phys. Chem. C 111, 10194 (2007)

    Google Scholar 

  26. L. Armelao, F. Heigl, S. Brunet, R. Sammynaiken, T. Regier, R.I.R. Blyth, L. Zuin, R. Sankari, J. Vogt, T.K. Sham, Chem. Phys. Chem. 11, 3625 (2010)

    Google Scholar 

  27. Y.P. Varshni, Physica (Amsterdam) 34, 149 (1967)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 60277023) and Shandong Provincial Natural Science Foundation of China (Grant No. ZR2011FM007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Jiang, F. Fabrication of Co-doped ZnO nanowires and their temperature-dependent ultraviolet emission properties. Appl. Phys. A 116, 2025–2029 (2014). https://doi.org/10.1007/s00339-014-8389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8389-0

Keywords

Navigation