Skip to main content
Log in

Parasitism in reef fish communities: evaluating the roles of host traits, habitat use, and phylogeny on infection by Scaphanocephalus (Trematoda)

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Parasites represent a critically understudied component of reef communities—a knowledge gap that has become more evident as infectious diseases emerge. Here, we test the roles of competing ecological and evolutionary factors in driving infections by an emerging infectious phenomenon: Black spot syndrome (BSS) in Caribbean reef fishes. BSS, a condition associated with localized hyperpigmentation in the dermis and fins of fishes, has recently been linked to infection by trematode parasites in the genus Scaphanocephalus. Using phylogenetic generalized linear mixed models, we evaluated the influence of host phylogeny, habitat preference, body size, and trophic position on infection abundance. Metacercariae of Scaphanocephalus were recorded in 29 of 41 fish species, including 21 new host species records, and within 306 fish (62.3% prevalence). Among species, infection load increased significantly with host body size and decreased with host trophic level, such that large-bodied herbivores tended to support the most infection. There was no significant effect of host phylogeny on infection load. These results suggest the parasite is a generalist in its use of fish intermediate hosts and emphasize the influence of local variation in parasite exposure risk. Overall, the count of visible spots per fish was a positive predictor of Scaphanocephalus abundance among species and individuals, although not all fish species exhibited spots, even when infection loads were high. Findings from this study indicate that Scaphanocephalus infections are far more prevalent in reef fishes than previously recognized and highlight the importance of investigating infection patterns beyond the external symptoms of BSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data used in this study are available through figshare (https://doi.org/10.6084/m9.figshare.25335541).

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics International 11:36–42

    Google Scholar 

  • Al-Salem AAM, Baghdadi HB, Mahmoud MA, Ibrahim M, Bayoumy EM (2021) Morphomolecular and pathological study of Scaphanocephalus sp. in new host Siganus argenteus in the Arabian Gulf. Dis Aquat Org 144:221–230

    Article  Google Scholar 

  • Artim JM, Sikkel PC (2013) Live coral repels a common reef fish ectoparasite. Coral Reefs 32:487–494

    Article  ADS  Google Scholar 

  • Barber I, Hoare D, Krause J (2000) Effects of parasites on fish behaviour: a review and evolutionary perspective. Rev Fish Biol Fisheries 10:131–165

    Article  Google Scholar 

  • Bernal MA, Floeter SR, Gaither MR, Longo GO, Morais R, Ferreira CE, Vermeij MJ, Rocha LA (2016) High prevalence of dermal parasites among coral reef fishes of Curaçao. Mar Biodivers 46:67–74

    Article  Google Scholar 

  • Boaden A, Kingsford MJ (2015) Predators drive community structure in coral reef fish assemblages. Ecosphere 6:1–33

    Article  Google Scholar 

  • Bray RA, Gibson DI, Jones A et al (2008) Keys to the Trematoda. CABI, Wallingford, UK

    Google Scholar 

  • Bray RA, Diaz PE, Cribb TH (2016) Knowledge of marine fish trematodes of Atlantic and Eastern Pacific Oceans. Syst Parasitol 93:223–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks ME, Kristensen K, Van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Machler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal 9:378–400

    Article  Google Scholar 

  • Bullard SA, Overstreet RM (2008) Digeneans as enemies of fishes. Fish Diseases 2:817–976

    Google Scholar 

  • Calhoun DM, McDevitt-Galles T, Johnson PTJ (2018) Parasites of invasive freshwater fishes and the factors affecting their richness. Freshwater Science 37:134–146

    Article  Google Scholar 

  • Cheal A, MacNeil MA, Cripps E, Emslie M, Jonker M, Schaffelke B, Sweatman H (2010) Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29:1005–1015

    Article  ADS  Google Scholar 

  • Cohen-Sánchez A, Valencia JM, Box A, Solomando A, Tejada S, Pinya S, Catanese G, Sureda A (2023) Black spot disease related to a trematode ectoparasite causes oxidative stress in Xyrichtys novacula. J Exp Mar Biol Ecol 560:151854

    Article  Google Scholar 

  • Cuppens M, Vogels J (2004) Characterization of foraging areas of the Caribbean Flamingo Phoenicopterus ruber on Curaçao (Netherland Antilles): the relationship between abiotic factors, food abundance and flamingo density. Radboud University/CARMABI, Nijmegen

    Google Scholar 

  • de Graaf M, Simal F (2015) Quick scan to assess the prevalence of dermal parasites among coral reef fishes of Bonaire. Wageningen University IMARES

    Google Scholar 

  • Debrot AO, Tiel AB, Bradshaw JE (1999) Beach debris in Curaçao. Mar Pollut Bull 38:795–801

    Article  CAS  Google Scholar 

  • Dell CL, Longo GO, Burkepile DE, Manfrino C (2020) Few herbivore species consume dominant macroalgae on a Caribbean coral reef. Front Mar Sci 7:676–682

    Article  Google Scholar 

  • Dennis MM, Izquierdo A, Conan A, Johnson K, Giardi S, Frye P, Freeman MA (2019) Scaphanocephalus-associated dermatitis as the basis for black spot disease in Acanthuridae of St. Kitts, West Indies. Diseases of Aquatic Organisms 137:53–63

    Article  PubMed  Google Scholar 

  • Duffy JE, Lefcheck JS, Stuart-Smith RD, Navarrete SA, Edgar GJ (2016) Biodiversity enhances reef fish biomass and resistance to climate change. Proc Natl Acad Sci 113:6230–6235

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer WG, Williams E, Williams LB (1985) Digenetic trematodes of marine fishes of the western and southwestern coasts of Puerto Rico. Proc Helminthol Soc Wash 52:85–94

    Google Scholar 

  • Eierman LE, Tanner CE (2019) Prevalence and severity of cutaneous pigmented lesions on ocean surgeonfish, Acanthurus bahianus, at Turneffe Atoll and Glover’s Reef of Belize. Caribbean Naturalist 62:1–12

    Google Scholar 

  • Elmer F, Kohl ZF, Johnson PTJ, Peachey RBJ (2019) Black spot syndrome in reef fishes: using archival imagery and field surveys to characterize spatial and temporal distribution in the Caribbean. Coral Reefs 38:1303–1315

    Article  ADS  Google Scholar 

  • Esch GW, Barger MA, Fellis KJ (2002) The transmission of digenetic trematodes: style, elegance, complexity. Integr Comp Biol 42:304–312

    Article  PubMed  Google Scholar 

  • Froese R, Pauly D (2023) FishBase. http://www.fishbase.org. Accessed 10 Nov 2023

  • Galaktionov KV, Bustnes JO, Bårdsen B-J, Wilson JG, Nikolaev KE, Sukhotin AA, Skírnisson K, Saville DH, Ivanov MV, Regel KV (2015) Factors influencing the distribution of trematode larvae in blue mussels Mytilus edulis in the North Atlantic and Arctic Oceans. Mar Biol 162:193–206

    Article  CAS  Google Scholar 

  • Grutter AS, Rumney JG, Sinclair-Taylor T, Waldie P, Franklin CE (2011) Fish mucous cocoons: the ‘mosquito nets’ of the sea. Biol Let 7:292–294

    Article  Google Scholar 

  • Harrod C, Griffiths D (2005) Ichthyocotylurus erraticus (Digenea: Strigeidae): factors affecting infection intensity and the effects of infection on pollan (Coregonus autumnalis), a glacial relict fish. Parasitology 131:511–519

    Article  CAS  PubMed  Google Scholar 

  • Heins DC, Baker JA (2008) The stickleback-Schistocephalus host–parasite system as a model for understanding the effect of a macroparasite on host reproduction. Behaviour 145:625–645

    Article  Google Scholar 

  • Hoffman GL (1999) Parasites of North American Freshwater Fishes. Cornell University Press, New York, N. Y.

    Book  Google Scholar 

  • Hopper JV, Poulin R, Thieltges DW (2008) Buffering role of the intertidal anemone Anthopleura aureoradiata in cercarial transmission from snails to crabs. J Exp Mar Biol Ecol 367:153–156

    Article  Google Scholar 

  • Hovland M (2008) Deep-water coral reefs: unique biodiversity hot-spots. Springer Science & Business Media, Praxis Publishing, UK

    Google Scholar 

  • Hutton RF (1964) A second list of parasites from marine and coastal animals of Florida. Trans Am Microsc Soc 83:439–447

    Article  Google Scholar 

  • Ives AR (2018) Mixed and phylogenetic models: a conceptual introduction to correlated data. Leanpub.com

  • Jacobson KC, Teel D, Van Doornik DM, Casillas E (2008) Parasite-associated mortality of juvenile Pacific salmon caused by the trematode Nanophyetus salmincola during early marine residence. Mar Ecol Prog Ser 354:235–244

    Article  ADS  Google Scholar 

  • Kohl ZF, Calhoun DM, Elmer F, Peachey RBJ, Leslie KL, Tkach V, Kinsella JM, Johnson PTJ (2019) Black-spot syndrome in Caribbean fishes linked to trematode parasite infection (Scaphanocephalus expansus). Coral Reefs 38:917–930

    Article  ADS  Google Scholar 

  • Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L, Boch CA, Dobson AP, Dunham EJ, Fredensborg BL, Huspeni TC (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–518

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PT, Kuris AM, Marcogliese DJ (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546

    Article  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28(2570–2580):e2576

    Google Scholar 

  • Lauckner G (1984) Impact of trematode parasitism on the fauna of a North Sea tidal flat. Helgoländer Meeresuntersuchungen 37:185–199

    Article  Google Scholar 

  • Lemly AD (1984) Ecology of Uvulifer ambloplitis (Trematoda:Strigeida) in a population of bluegill sunfish, Lepomis macrochirus (Cantrarchidae) (North Carolina). Wake Forest University

    Google Scholar 

  • Li D, Dinnage R, Nell LA, Helmus MR, Ives AR (2020) phyr: an R package for phylogenetic species-distribution modelling in ecological communities. Methods Ecol Evol 11:1455–1463

    Article  Google Scholar 

  • Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D (2021) Performance: an R package for assessment, comparison and testing of statistical models. JOSS 6:3139–3149

    Article  ADS  Google Scholar 

  • Maceda-Veiga A, Green AJ, Poulin R, Lagrue C (2016) Body condition peaks at intermediate parasite loads in the common bully Gobiomorphus cotidianus. PLoS ONE 11:e0168992

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazzi D (2004) Parasites make male pipefish careless. J Evol Biol 17:519–527

    Article  CAS  PubMed  Google Scholar 

  • Montoya-Mendoza J, Chavez-Lopez R, Franco-Lopez J (2004) Helminths from Dormitator maculatus (Pisces: Eleotridae) in Alvarado Lagoon, Veracruz, Mexico, and supplemental data for Clinostomum complanatum Rudolphi, 1814 from Egretta caerulea (Aves: Ardeidae). Gulf and Caribbean Research 16:115–127

    Article  Google Scholar 

  • Mouritsen K, Poulin R (2002) Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124:101–117

    Article  Google Scholar 

  • Mouritsen KN, Poulin R (2010) Parasitism as a determinant of community structure on intertidal flats. Mar Biol 157:201–213

    Article  Google Scholar 

  • Nagelkerken I, Dorenbosch M, Verberk W, De La Morinière EC, Van der Velde G (2000) Importance of shallow-water biotopes of a Caribbean bay for juvenile coral reef fishes: patterns in biotope association, community structure and spatial distribution. Mar Ecol Prog Ser 202:175–192

    Article  ADS  Google Scholar 

  • Nagelkerken I, Roberts CV, Van Der Velde G, Dorenbosch M, Van Riel M, De La Moriniere EC, Nienhuis P (2002) How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Mar Ecol Prog Ser 244:299–305

    Article  ADS  Google Scholar 

  • Nakamura G, Richter A, Soares BE (2021) FishPhyloMaker: an R package to generate phylogenies for ray-finned fishes. Eco Inform 66:101481

    Article  Google Scholar 

  • Overstreet RM, Hawkins WE (2017) Diseases and mortalities of fishes and other animals in the Gulf of Mexico habitats and biota of the Gulf of Mexico: before the deepwater horizon oil spill. Springer, New York, NY, pp 1589–1738

    Google Scholar 

  • Pearse W, Cadotte M, Cavender-Bares J, Ives A, Tucker C, Walker S, Helmus M (2022) A gentle introduction to Phylogenetic generalised linear mixed models

  • Poulin R (2000) Variation in the intraspecific relationship between fish length and intensity of parasitic infection: biological and statistical causes. J Fish Biol 56:123–137

    Article  Google Scholar 

  • Poulin R, Blasco-Costa I, Randhawa HS (2016) Integrating parasitology and marine ecology: seven challenges towards greater synergy. J Sea Res 113:3–10

    Article  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Roberts BA (2021) A systematic review of parasites found within selected teleost fishes of the South Florida Hermatypic Coral Reef Tract. Nova Southeastern University

  • Robertson D, Tornabene L (2021) Reef-associated bony fishes of the Greater Caribbean: a checklist In: Zenodo (ed). https://doi.org/10.5281/zenodo.5592149

  • Rosenqvist G, Johansson K (1995) Male avoidance of parasitized females explained by direct benefits in a pipefish. Anim Behav 49:1039–1045

    Article  Google Scholar 

  • Schell SC (1985) Handbook of trematodes of North America north of Mexico. University Press of Idaho, Moscow, ID

    Google Scholar 

  • Shaw JC, Korzan WJ, Carpenter RE, Kuris AM, Lafferty KD, Summers CH, Øverli Ø (2009) Parasite manipulation of brain monoamines in California killifish (Fundulus parvipinnis) by the trematode Euhaplorchis californiensis. Proceedings of the Royal Society of London B: Biological Sciences 276:1137–1146

    CAS  Google Scholar 

  • Shimose T, Kanaiwa M, Nanami A (2019) Influence of the flesh quality and body size on the auction price of parrotfishes (Scaridae) at tropical island, southern Japan: implications for fisheries management. Reg Stud Mar Sci 25:100489

  • Shimose T, Katahira H, Kanaiwa M (2020) Interspecific variation of prevalence by Scaphanocephalus (Platyhelminthes: Trematoda: Heterophyidae) metacercariae in parrotfishes (Labridae: Scarini) from an Okinawan coral reef. International Journal for Parasitology: Parasites and Wildlife 12:99–104

    PubMed  PubMed Central  Google Scholar 

  • Sikkel PC, Welicky RL (2019) The ecological significance of parasitic crustaceans. In: Smit N, Bruce N, Hadfield K (eds) Parasitic Crustacea zoological monographs. Springer, Switzerland, AG, pp 421–477

    Chapter  Google Scholar 

  • Skinner RH (1982) The interrelation of water quality, external parasites and gill pathology of some fishes from Biscayne Bay. Florida Fishery Bulletin 2:262–289

    Google Scholar 

  • Spalding M, Ravilious C, Green EP (2001) World atlas of coral reefs. University of California Press, Oakland, CA

    Google Scholar 

  • Sweeting R (1974) Investigations into natural and experimental infections of freshwater fish by the common eye-fluke Diplostomum spathaceum Rud. Parasitology 69:291–300

    Article  CAS  PubMed  Google Scholar 

  • Timi JT, Poulin R (2020) Why ignoring parasites in fish ecology is a mistake. Int J Parasitol 50:755–761

    Article  PubMed  Google Scholar 

  • Tobler M, Schlupp I (2008) Influence of black spot disease on shoaling behaviour in female western mosquitofish, Gambusia affinis (Poeciliidae, Teleostei). Environ Biol Fishes 81:29–34

    Article  Google Scholar 

  • Tobler M, Plath M, Burmeister H, Schlupp I (2006) Black spots and female association preferences in a sexual/asexual mating complex (Poecilia, Poeciliidae, Teleostei). Behav Ecol Sociobiol 60:159–165

    Article  Google Scholar 

  • Valenzuela-Sánchez A, Wilber MQ, Canessa S, Bacigalupe LD, Muths E, Schmidt BR, Cunningham AA, Ozgul A, Johnson PT, Cayuela H (2021) Why disease ecology needs life-history theory: a host perspective. Ecol Lett 24:876–890

    Article  PubMed  Google Scholar 

  • Victor BC (1987) The mating system of the Caribbean rosy razorfish, Xyrichtys martinicensis. Bull Mar Sci 40:152–160

    Google Scholar 

  • Welsh JE, Liddell C, Van der Meer J, Thieltges DW (2017) Parasites as prey: the effect of cercarial density and alternative prey on consumption of cercariae by four non-host species. Parasitology 144:1775–1782

    Article  PubMed  Google Scholar 

  • Westneat MW, Alfaro ME (2005) Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Mol Phylogenet Evol 36:370–390

    Article  PubMed  Google Scholar 

  • Wiley JW, Poole AF, Clum NJ (2014) Distribution and natural history of the Caribbean osprey (Pandion haliaetus ridgwayi). Journal of Raptor Research 48:396–407

    Article  Google Scholar 

  • Williams MA, Faiad S, Claar DC, French B, Leslie KL, Oven E, Guerra AS, Micheli F, Zgliczynski BJ, Haupt AJ (2022) Life history mediates the association between parasite abundance and geographic features. J Anim Ecol 91:996–1009

    Article  PubMed  Google Scholar 

  • Wood CL, Baum JK, Reddy SM, Trebilco R, Sandin SA, Zgliczynski BJ, Briggs AA, Micheli F (2015) Productivity and fishing pressure drive variability in fish parasite assemblages of the Line Islands, equatorial Pacific. Ecology 96:1383–1398

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Cheyenna de Wit, Jeroen Schneider, and Nicole Brackenborough for their support and assistance in fish collection, and Aydan Roth, Evelyn Esparza, Kavari Kapur, Mackenzie Campbell, Sydney Watson, and Phoebe Oehmig for their assistance with fish dissections. We would also like to express our gratitude to the CARMABI staff and in particular to Dr. Mark Vermeij for providing support and historical knowledge essential to this project. L. Valentine and O. Osbourne offered advice and inspiration on study design. Finally, we gratefully acknowledge financial support from the David and Lucile Packard Foundation, the Eppley Foundation, and undergraduate research grants from the Biological Sciences Initiative and the Undergraduate Research Opportunity Program.

Author information

Authors and Affiliations

Authors

Contributions

RJM and PTJJ designed the study; RJM, LJVtH, and JP collected field data; RJM, PTJJ, JP and DMC conducted fish necropsies; RJM and PTJJ performed statistical analyses and visualizations; RJM and PTJJ drafted the manuscript and all authors contributed to revisions.

Corresponding author

Correspondence to Pieter T. J. Johnson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malawauw, R.J., Piaskowy, J., ter Horst, L.J.V. et al. Parasitism in reef fish communities: evaluating the roles of host traits, habitat use, and phylogeny on infection by Scaphanocephalus (Trematoda). Coral Reefs (2024). https://doi.org/10.1007/s00338-024-02480-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00338-024-02480-1

Keywords

Navigation