Skip to main content
Log in

Effects of light intensity and spectral composition on the growth and physiological adaptation of Acroporid corals

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Light affects physiological aspects of coral growth. However, it is unclear how light conditions (photoperiod, intensity, and spectrum) influence growth physiology. We examined the effects of various light conditions on skeletal growth promotion and the physiological mechanisms responsible for growth in Acroporid corals. Acroporid corals (Acropora tenuis, A. muricata, and A. intermedia) were reared for 2 months under various photoperiods (hours of light/dark = 8:16, 12:12, and 16:8) and light intensities (100 and 200 µEm−2 s−1). Growth was greater in all coral species under longer photoperiods and at higher light intensities. Next, we used a photoperiod of 16:10 (hours of light/dark) and 200 µEm−2 s−1 light of three spectral composition from a light-emitting diode. The growth of A. tenuis and A. intermedia increased with increasing wavelength. The symbiotic algae density increased as the photoperiod increased. Symbiotic algae density and chlorophyll content were affected by the light spectrum but were not associated with the degree of growth. Therefore, changes in light conditions can induce coral growth without changing symbiotic algae density or chlorophyll content. Real-time quantitative polymerase chain reaction analysis revealed that the level of carbonic anhydrase mRNA changed with coral growth, suggesting that light accelerates coral calcification via photosynthesis by algal symbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2005) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    Article  Google Scholar 

  • Al-Horani FA, Al-Rousan SA, Mansrah RS, Rasheed MY (2005) Coral calcification: use of radioactive isotopes and metabolic inhibitors to study the interactions with photosynthesis and respiration. Chem Ecol 21:325–335

    Article  CAS  Google Scholar 

  • Allemand D, Tambutte E, Zoccola D, Tambutte S (2010) Coral Calcification, Cells to Reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht.

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Physiol Plant Mol Biol 45:369–392

    Article  CAS  Google Scholar 

  • Bertucci A, Moya A, Tambutté S, Allemand D, Supuran CT, Zoccola D (2013) Carbonic anhydrases in anthozoan corals—a review. Bioorg Med Chem 21:1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71:129–153

    Article  CAS  PubMed  Google Scholar 

  • Courtial L, Ferrier-Pagès C, Jacquet S, Rodolfo-Metalpa R, Reynaud S, Rottier C, Houlbrèque F (2017) Effects of temperature and UVR on organic matter fluxes and the metabolic activity of Acropora muricata. Biol Open 6:1190–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389e395

  • Dubinsky Z, Falkowski PG, Scharf D (1983) Aspects of adaptation of hermatypic corals and their endosymbiontic zooxanthellae to light. Bull Inst Oceanogr Fish 9:124–134

    Google Scholar 

  • Eddy TD, Cheung WWL, Bruno JF (2018) Historical baselines of coral cover on tropical reefs as estimated by expert opinion. PeerJ 6:e4308

    Article  PubMed  PubMed Central  Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Article  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioevergetics of a symbiotic coral. Bio Sci 34:705–709

    CAS  Google Scholar 

  • Fujii R, Kita M, Doe M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Mizoguchi T, Cogdell RJ, Hashimoto H (2012) The pigment stoichiometry in a chlorophyll a/c type photosynthetic antenna. Photosynth Res 111:165–172

    Article  CAS  PubMed  Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457

    Article  CAS  PubMed  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    Article  CAS  Google Scholar 

  • Goreau TF, Goreau NI (1959) The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol Bull 117:239–250

    Article  CAS  Google Scholar 

  • Hayes RL, Goreau NI (1977) Intracelullar crystal-bearing vesicles in the epidermis of scleractinian corals, Astrangia danae (Agassiz) and Porites porites (Pallas). Biol Bull 152:26

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Prieto R, Trench RK (1997) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. II. Responses of chlorophyll protein complexes to different light regimes. Mar Biol 130:23–33

    Article  CAS  Google Scholar 

  • Isa Y, Yamazato K (1984) The distribution of carbonic anhydrase in a staghorn coral, Acropora hebes (Dana). Galaxea 3:25–36

    CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:S191–S194

    Article  Google Scholar 

  • Kinzie RA III, Jokiel PL, York R (1984) Effects of light of altered spectral composition on coral zooxanthellae associations and on zooxanthellae in vitro. Mar Biol 78:239–248

    Article  Google Scholar 

  • Kuanui P, Chavanich S, Viyakarn V, Omori M, Fujita T, Lin C (2020) Effect of light intensity on survival and photosynthetic efficiency of cultured corals of different ages. Est Coast Shelf Sc 235:106515

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28(16):2570–2580

    Article  CAS  PubMed  Google Scholar 

  • Lasker HR (1979) Light dependent activity patterns among reef corals: Montastrea cavernosa. Biol Bull 156:196–211

    Article  Google Scholar 

  • Levy O, Z Dubinsky, Y Achituv (2003) Photobehavior of stony corals: responses to light spectra and intensity. J Exp Biol 206:4041–4049

    Article  CAS  PubMed  Google Scholar 

  • Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar Ecol Prog Ser 220:153–162

    Article  CAS  Google Scholar 

  • Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102

    Article  CAS  Google Scholar 

  • Mass T, Kline DI, Roopin M, Veal CJ, Cohen S, Iluz D, Levy O (2010) The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. J Exp Biol 213:4084–4091

    Article  CAS  PubMed  Google Scholar 

  • Moya A, Tambutté S, Bertucci A, Tambutté E, Lotto S, Vullo D, Supuran CT, Allemand D, Zoccola D (2008) Carbonic anhydrase in the scleractinian coral Stylophora pistillata : characterization, localization, and role in biomineralization. J Biol Chem 283:25475–25484

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Morita M, Kurihara H, Mitarai S (2012) Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades. Biol Open 1:75–81

    Article  CAS  PubMed  Google Scholar 

  • Osinga R, Janssen M, Janse M (2008) Advances in coral husbandry in public aquariums. Public aquarium husbandry series, vol 2. Leewis RJ and Janse M (eds) pp 173–183

  • Osinga R, Schutter M, Griffioen B, Wijffels RH, Verreth JAJ, Shafir S, Henard S, Taruffi M, Gili C, Lavorano S (2011) The biology and economics of coral growth. Mar Biotechnol (NY) 13:658–671

    Article  CAS  PubMed  Google Scholar 

  • Pearse VB, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull 141:350–363

    Article  CAS  Google Scholar 

  • Piller WE, Riegl B (2003) Vertical versus horizontal growth strategies of coral frameworks (Tulamben, Bali, Indonesia). Int J Earth Sci 92:511–519

    Article  Google Scholar 

  • Reynaud-Vaganay S, Juillet-Leclerc A, Jaubert J, Gattuso JP (2001) Effect of light on skeletal δ13C and δ18O, and interaction with photosynthesis, respiration and calcification in two zooxanthellate scleractinian corals. Palaeogeogr Palaeoclim Palaeoecol 175:393–404

    Article  Google Scholar 

  • Reynaud-Vaganay S, Ferrier-Pagés C, Boisson F, Allemand D, Fairbanks RG (2004) Effect of light and temperature on calcification and strontium uptake in the scleractinian coral Acropora verweyi. Mar Ecol Prog Ser 279:105–112

    Article  Google Scholar 

  • Rocha RJM, Pimentel T, Serôdio J, Rosa R, Calado R (2013) Comparative performance of light emitting plasma (LEP) and light emitting diode (LED) in ex situ aquaculture of scleractinian corals. Aquaculture 402–403:38–45

    Article  Google Scholar 

  • Ross CL, Warnes A, Comeau S, Cornwall CE, Cuttler MVW, Naugle M, McCulloch MT, Schoepf V (2022) Commun Earth Environ 3:72

    Article  Google Scholar 

  • Schlacher TA, Stark J, Fischer ABP (2007) Evaluation of artificial light regimes and substrate types for aquaria propagation of the staghorn coral Acropora solitaryensis. Aquaculture 269:278–289

    Article  Google Scholar 

  • Schneider K, Erez J (2006) The effect of carbonate chemistry on calcifcation and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293

    Article  CAS  Google Scholar 

  • Schutter M, Van Velthoven B, Janse M, Osinga R, Janssen M, Wijffels R, Verreth J (2008) The effect of irradiance on longterm skeletal growth and net photosynthesis in Galaxea fascicularis under four light conditions. J Exp Mar Biol Ecol 67:75–80

    Article  Google Scholar 

  • Schutter M, van der Ven RM, Janse M, Verreth JAJ, Wijffels RH, Osinga R (2012) Light intensity, photoperiod duration, daily light flux and coral growth of Galaxea fascicularis in an aquarium setting: a matter of photons? J Mar Biol Assoc UK 92:703–712

    Article  CAS  Google Scholar 

  • Suwa R, Iguchi A (2008) A review of molecular phylogenetic studies of zooxanthellae living symbiotically with reef-building corals (focusing on the northwestern Pacific). J Coral Reef Soc Jpn 10:13–23

    Article  Google Scholar 

  • Titlyanov EA, Titlyanova TV, Yamazato K, Van Woesik R (2001) Photoacclimation dynamics of the coral Stylophora pistillata to low and extremely low light. J Exp Mar Biol Ecol 263:211–225

    Article  Google Scholar 

  • Ulstrup KE, Van Oppen MJH (2003) Geographic and habit partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484

    Article  CAS  PubMed  Google Scholar 

  • Wangpraseurt D, Larkum AW, Ralph PJ, Kühl M (2012) Light gradients and optical microniches in coral tissues. Front Microbiol 3:316

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijgerde T, Henkemans P, Osinga R (2012) Effects of irradiance and light spectrum on growth of the scleractinian coral Galaxea fascicularis—applicability of LEP and LED lighting to coral aquaculture. Aquaculture 344–349:188–193

    Article  Google Scholar 

  • Wijgerde T, van Melis A, Silva CIF, Leal MC, Vogels L, Mutter C, Osinga R (2014) Red light represses the photophysiology of the scleractinian coral Stylophora pistillata. PLoS One 9:e92781

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson C (2008) Status of coral reefs of the world: 2008. Global coral reef monitoring network and reef and rainforest research centre, Townsville, Australia, p 296

  • Wirshing HH, Baker AC (2014) Molecular evolution of calcification genes in morphologically similar but phylogenetically unrelated scleractinian corals. Mol Phylogenet Evol 77:281–295

    Article  CAS  PubMed  Google Scholar 

  • Zoccola D, Tambutté E, Kulhanek E, Puverel S, Scimeca JC, Allemand D, Tambutté S (2004) Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochim Biophys Acta Biomembranes 1663:117–126

    Article  CAS  Google Scholar 

  • Zoccola D, Ganot P, Bertucci A, Caminiti-Segonds N, Techer N, Voolstra CR, Aranda M, Tambutte E, Allemand D, Casey JR, Tambutté S (2015) Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci Rep 5:9983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully thank staff of Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan, and of Fisheries and Aquaculture Research Center at Okiden Kaihatsu Co., LtD., Okinawa, Japan, for use of facilities. We also greatly appreciate kind assistance from Lin Che-hung and Tanya Singh in data analysis of this manuscript. This study was supported in part by Construction of the Okinawa Science & Technology Innovation System from Okinawa Science & Technology Promotion Center (15D1000013 and 16D1000007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Takemura.

Ethics declarations

Conflict of interest

The authors declared that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izumi, R., Tan, E.S., Higa, H. et al. Effects of light intensity and spectral composition on the growth and physiological adaptation of Acroporid corals. Coral Reefs 42, 385–398 (2023). https://doi.org/10.1007/s00338-023-02348-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-023-02348-w

Keywords

Navigation