Skip to main content

Advertisement

Log in

Unweaving a hard taxonomic knot in coral reef dwellers: integrative systematics reveals two parallel cryptic species complexes in ‘marbled’ shrimps of the genus Saron Thallwitz 1891 (Caridea: Hippolytidae)

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Phenotypic dissimilarity does not always evolve in concert with genetic diversification, resulting in cryptic species complexes that represent a major challenge for documenting actual biodiversity. Resolving these complexes is of paramount importance. Herein, we tested whether Saron marmoratus (Olivier, 1811) and S. neglectus de Man, 1902, two coral reef-dwelling shrimp species distributed over contiguous biogeographic provinces in the Indo-West Pacific and crossing various biogeographic and phylogeographic breaks, are such cryptic species complexes, as indicated by their significant diversity of color patterns. Firstly, a principal component analysis using 19 morphological traits confirmed that S. marmoratus and S. neglectus were morphologically distinctive, however, failing to detect morphologically defined groups within each of these taxa. On the other hand, molecular phylogenetic analyses (nuclear Histone 3 and mitochondrial 16S RNA markers) demonstrated a total of five well-supported clades in these two taxa, with moderate to deep genetic divergence among them. Species delimitation approaches indicated at least 10 (and a maximum of 15) putative cryptic species in the S. marmoratus and S. neglectus species complexes. Furthermore, color patterns segregated most but not all cryptic lineages. Altogether, the information above demonstrates that S. marmoratus and S. neglectus represent two cryptic species complexes, which diversified in somewhat parallel ways. Additional integrative studies, as we have shown here, to reveal the extend and magnitude of cryptic species complexes in coral reefs, are warranted given the current acute biodiversity crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anker A (2012) Revision of the western Atlantic members of the Alpheus armillatus H. Milne Edwards, 1837 species complex (Decapoda, Alpheidae), with description of seven new species. Zootaxa 3386:1–109

    Article  Google Scholar 

  • Anker A, Tavares M, Mendonça JB (2016) Alpheid shrimps (Decapoda: Caridea) of the Trindade & Martin Vaz Archipelago, off Brazil, with new records, description of a new species of Synalpheus and remarks on zoogeographical patterns in the oceanic islands of the tropical southern Atlantic. Zootaxa 4138:1–58

    Article  Google Scholar 

  • Baeza JA (2013) Molecular phylogeny of broken-back shrimps (genus Lysmata and allies): a test of the ‘Tomlinson–Ghiselin’ hypothesis explaining the evolution of hermaphroditism. Mol Phylogenet Evol 69:46–62. https://doi.org/10.1016/j.ympev.2013.05.013

    Article  Google Scholar 

  • Baeza JA, Behringer D (2017) Integrative taxonomy of the ornamental ‘peppermint’ shrimp public market and population genetics of Lysmata boggessi, the most heavily traded species worldwide. PeerJ 5:e3786. https://doi.org/10.7717/peerj.3786

    Article  Google Scholar 

  • Baeza JA, Fuentes MS (2013) Exploring phylogenetic informativeness and nuclear copies of mitochondrial DNA (numts) in three commonly used mitochondrial genes: mitochondrial phylogeny of peppermint, cleaner and semi-terrestrial shrimps (Caridea: Lysmata, Exhippolysmata, Merguia). Zool J Linn Soc 168:699–722. https://doi.org/10.1111/zoj.12044

    Article  Google Scholar 

  • Baeza JA, Prakash S (2019) An integrative taxonomic and phylogenetic approach reveals a complex of cryptic species in the ‘peppermint’shrimp Lysmata wurdemanni sensu stricto. Zool J Linn Soc 185:1018–1038. https://doi.org/10.1093/zoolinnean/zly084

    Article  Google Scholar 

  • Baeza JA, Schubart CD, Zillner P, Fuentes S, Bauer RT (2009) Molecular phylogeny of shrimps from the genus Lysmata (Caridea: Hippolytidae): the evolutionary origins of protandric simultaneous hermaphroditism and pair-living. Biol J Linn Soc 96:415–424. https://doi.org/10.1111/j.1095-8312.2008.01133.x

    Article  Google Scholar 

  • Baeza JA, Bauer RT, Okuno J, Thiel M (2014) Molecular phylogeny of hinge-beak shrimps (Decapoda: Caridea: Rhynchocinetes and Cinetorhynchus) and allies: a formal test of familiar and generic monophyly using a multilocus phylogeny. Zool J Linn Soc 172:426–450. https://doi.org/10.1111/zoj12173

    Article  Google Scholar 

  • Banner DM, Banner AH (1982) The alpheid shrimp of Australia part III: The remaining alpheids, principally the genus Alpheus, and the family Ogyrididae. Rec Aust Mus 34:1–357

    Article  Google Scholar 

  • Barber P, Boyce SL (2006) Estimating diversity of Indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae. Proc Royal Soc B-Biol Sci 273:2053–2061. https://doi.org/10.1098/rspb.2006.3540

    Article  CAS  Google Scholar 

  • Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2000) A marine Wallace’s line? Nature 406:692–693. https://doi.org/10.1038/35021135

    Article  CAS  Google Scholar 

  • Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2002) Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences. Mol Ecol 11:659–674. https://doi.org/10.1046/j.1365-294X.2002.01468.x

    Article  CAS  Google Scholar 

  • Barber PH, Erdmann MV, Palumbi SR (2006) Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the coral triangle. Evolution 60:1825–1839. https://doi.org/10.1111/j.0014-3820.2006.tb00526.x

    Article  Google Scholar 

  • Bauer RT (2004) Remarkable shrimps: adaptations and natural history of the carideans. University of Oklahoma Press, Norman

    Google Scholar 

  • Bickford D, Lohman D, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155. https://doi.org/10.1016/j.tree.2006.11.004

    Article  Google Scholar 

  • Blair C, Bryson RW Jr (2017) Cryptic diversity and discordance in single-locus species delimitation methods within horned lizards (Phrynosomatidae: Phrynosoma). Mol Ecol Resour 17:1168–1182. https://doi.org/10.1111/1755-0998.12658

    Article  CAS  Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan TG, Wu C-H, Xie D (2014) BEAST2: A software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537. https://doi.org/10.1371/journal.pcbi.1003537

    Article  CAS  Google Scholar 

  • Calado R (2008) Marine ornamental shrimp: biology, aquaculture and conservation. Wiley, Hoboken, p 280

    Google Scholar 

  • Calado R, Lin J, Rhyne AL, Araújo R, Narciso L (2003) Marine ornamental decapods - Popular, pricey, and poorly studied. J Crustac Biol 23:963–973. https://doi.org/10.1651/C-2409

    Article  Google Scholar 

  • Carstens BC, Pelletier TA, Reid NM, Satler JD (2013) How to fail at species delimitation. Mol Ecol 22:4369–4383. https://doi.org/10.1111/mec.12413

    Article  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334

    Article  CAS  Google Scholar 

  • Chace FA Jr (1997) The caridean shrimps (Crustacea: Decapoda) of the Albatross Philippine Expedition, 1907–1910, part 7: families Atyidae, Eugonatonotidae, Rhynchocinetidae, Bathypalaemonellidae, Processidae, and Hippolytidae. Smithson Contrib Zool 57:1–106

    Google Scholar 

  • Chan BKK, Tsang LM, Chu KH (2007) Morphological and genetic differentiation of the acorn barnacle Tetraclita squamosa (Crustacea, Cirripedia) in East Asia and description of a new species of Tetraclita. Zool Scripta 36:79–91. https://doi.org/10.1111/j.1463-6409.2007.00260.x

    Article  Google Scholar 

  • Coates DJ, Byrne M, Moritz C (2018) Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Front Ecol Evol 6:165. https://doi.org/10.3389/fevo.2018.00165

    Article  Google Scholar 

  • Colgan D, McLauchlan A, Wilson GDF, Livingston S, Edgecombe GD, Macaranas J, Cassis G, Gray MR (1998) Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Aust J Zool 46:419–437. https://doi.org/10.1071/ZO98048

    Article  Google Scholar 

  • Coutière H (1910) Les crevettes a males dimorphs du genre Saron. Bull De La Soc Philom De Paris, Ser 10(2):1–17

    Google Scholar 

  • Cowman PF, Bellwood DR (2013) Vicariance across major marine biogeographic barriers: temporal concordance and the relative intensity of hard versus soft barriers. Proc Royal Soc B-Biol Sci 280:1541. https://doi.org/10.1098/rspb.2013.1541

    Article  Google Scholar 

  • Cruz JPN, Dimaala ML, Francisco LGL, Franco EJS, Bandala AA, Dadios EP (2013) March. Object recognition and detection by shape and color pattern recognition utilizing artificial neural networks. In: International conference of information and communication technology (ICoICT) (pp. 140–144). IEEE.

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModeltest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  Google Scholar 

  • De Grave S, Fransen CHJM (2011) Carideorum catalogus: the recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zool Med Leiden 204:195–588

    Google Scholar 

  • JG de Man (1902) Die von Herrn Professor Kükenthal im indischen archipel gesammelten dekapoden und stomatopoden. In: W. Kükenthal Ergebnisse einer zoologischen Forschungsreise in den Molukken und Borneo, im Auftrage der Senckenbergischen naturforschenden Gesellschaft 25, 465–929

  • Debelius H (2001) Crustacea guide of the world: Atlantic ocean, Indian ocean. Conch Books, Pacific Ocean, p 320

    Google Scholar 

  • DeBoer TS, Naguit MRA, Erdmann MV, Ablan-Lagman MCA, Carpenter KE, Toha AHA, Barber PH (2014) Concordance between phylogeographic and biogeographic boundaries in the coral triangle: conservation implications based on comparative analyses of multiple giant clam species. Bull Mar Sci 90:277–300. https://doi.org/10.5343/bms.2013.1003

    Article  Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 354:401–406. https://doi.org/10.1126/science.1251817

    Article  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. https://doi.org/10.1186/1471-2148-7-214

    Article  CAS  Google Scholar 

  • Dudoit AA, Iacchei M, Coleman RR, Gaither MR, Browne WE, Bowen BW, Toonen RJ (2018) The little shrimp that could: phylogeography of the circumtropical Stenopus hispidus (Crustacea: Decapoda), reveals divergent atlantic and pacific lineages. PeerJ 6:e4409. https://doi.org/10.7717/peerj.4409

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  Google Scholar 

  • Fontaneto D, Flor J-F, Tang CQ (2015) Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar Biodiv 45:433–451. https://doi.org/10.1007/s12526-015-0319-7

    Article  Google Scholar 

  • Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Syst Biol 62:707–724. https://doi.org/10.1093/sysbio/syt033

    Article  Google Scholar 

  • Gaither MR, Toonen RJ, Robertson DR, Planes S, Bowen BW (2010) Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). J Biogeo 37:133–147. https://doi.org/10.1111/j.1365-2699.2009.02188.x

    Article  Google Scholar 

  • Green AL, Mous PJ (2008) Delineating the Coral Triangle, its Ecoregions and Functional Seascapes. Version 50 TNC Coral Triangle Program Report 1/08, 1–44.

  • Hayashi, K-I., 1983. Diagnose einer neuen Saron-Art (Saron inermis n. sp.) aus Indonesien. In H. Debelius, Gezpanzerte Meeresritter, p 117. Essen.

  • Hayashi KI (1984) Diagnosis of Saron rectirostris sp. nov. from Indonesia. In: H Debelius, Armoured Knights of the Sea. p 116. Essen.

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. P Natl Acad Sci USA 101:14812–14817. https://doi.org/10.1073/pnas.0406166101

    Article  CAS  Google Scholar 

  • Horne JB, van Herwerden L, Choat JH, Robertson DR (2008) High population connectivity across the Indo-Pacific: congruent lack of phylogeographic structure in three reef fish congeners. Mol Phylogen Evol 49:629–638. https://doi.org/10.1016/j.ympev.2008.08.023

    Article  Google Scholar 

  • Howlader MSA, Nair A, Gopalan SV, Merila J (2015) A new species of Microhyla (Anura: Microhylidae) from Nilphamari. Bangladesh Plos One 10:e0119825. https://doi.org/10.1371/journal.pone.0119825

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754

    Article  CAS  Google Scholar 

  • Huelsken T, Keyse J, Liggins L, Penny S, Treml EA, Riginos C (2013) A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean. PLoS One. https://doi.org/10.1371/journal.pone.0080858

    Article  Google Scholar 

  • Hurt C, Silliman K, Anker A, Knowlton N (2013) Ecological speciation in anemone-associated snapping shrimps (Alpheus armatus species complex). Mol Ecol 22:4532–4548. https://doi.org/10.1111/mec.12398

    Article  CAS  Google Scholar 

  • Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans R Soc A 374:20150202. https://doi.org/10.1098/rsta.2015.0202

    Article  Google Scholar 

  • Jörger KM, Schrödl M (2013) How to describe a cryptic species? Practical challenges of molecular taxonomy. Front Zool 10:59. https://doi.org/10.1186/1742-9994-10-59

    Article  Google Scholar 

  • Keith SA, Baird AH, Hughes TP, Madin JS, Connolly SR (2013) Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution. Proc Royal Soc B-Biol Sci 280:20130818. https://doi.org/10.1098/rspb.2013.0818

    Article  CAS  Google Scholar 

  • Kemp S (1914) Notes on crustacea decapoda in the Indian Museum, V. Hippolytidae. Rec Indian Mus 9:84–87

    Google Scholar 

  • Kemp S (1916) Notes on crustacea decapoda in the indian museum, VII. Further notes on Hippolytidae. Rec Indian Mus 12:385–386

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  Google Scholar 

  • Klimov PB, Lekveishvili M, Dowling APG, O’ Connor BM, BM (2004) Multivariate analysis of morphological variation in two cryptic species of Sancassania (Acari: Acaridae) from costa Rica. Ann Entamol Soc Am 97:322–345. https://doi.org/10.1093/aesa/97.2.322

    Article  Google Scholar 

  • Knowlton N (1986) Cryptic and sibling species among the decapod Crustacea. J Crustac Biol 6:356–363. https://doi.org/10.1163/193724086X00208

    Article  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216

    Article  Google Scholar 

  • Knowlton N, Keller BD (1985) Two more sibling species of alpheid shrimps associated with the Caribbean sea anemones Bartholomea annulata and Heteractis lucida. Bull Mar Sci 37:893–904

    Google Scholar 

  • Kuiter R, Debelius H (2009) World atlas of marine fauna: selected non-sessile marine invertebrates from around the world. IKAN Unterw Archiv 28:725

    Google Scholar 

  • Kulbicki M, Parravicini V, Bellwood DR, Arias-Gonzàlez E, Chabanet P, Floeter SR, Friedlander A, McPherson J, Myers RE, Vigliola L, Mouillot D (2013) Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PloS One. https://doi.org/10.1371/journal.pone.0081847

    Article  Google Scholar 

  • Leria L, Vila-Farré M, Álvarez-Presas M, Sánchez-Gracia A, Rozas J, Sluys R, Riutort M (2020) Cryptic species delineation in freshwater planarians of the genus Dugesia (Platyhelminthes, Tricladida): Extreme intraindividual genetic diversity, morphological stasis, and karyological variability. Mol Phylogen Evol 143:106496. https://doi.org/10.1016/j.ympev.2019.05.010

    Article  Google Scholar 

  • Lessios HA, Knowlton N (2015) Middle Miocene closure of the central American Seaway. Science 348:226–229. https://doi.org/10.1126/science.aaa2815

    Article  CAS  Google Scholar 

  • Lewis S, Maslin M (2015) Defining the Anthropocene. Nature 519:171–180. https://doi.org/10.1038/nature14258

    Article  CAS  Google Scholar 

  • Masonick P, Weirauch C (2020) Integrative species delimitation in Nearctic ambush bugs (Heteroptera: Reduviidae: Phymatinae): insights from molecules, geometric morphometrics and ecological associations. Syst Entomol. https://doi.org/10.1111/syen.12388

    Article  Google Scholar 

  • Mathews L, Anker A (2009) Molecular phylogeny reveals extensive ancient and ongoing radiations in a snapping shrimp species complex (Crustacea, Alpheidae, Alpheus armillatus). Mol Phylogen Evol 50:268–281. https://doi.org/10.1016/j.ympev.2008.10.026

    Article  CAS  Google Scholar 

  • Meyer CP, Geller JB, Paulay G (2005) Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evolution 59:113–125. https://doi.org/10.1111/j.0014-3820.2005.tb00899.x

    Article  Google Scholar 

  • Milne Edwards H (1834) Histoire Naturelle des Crustacés, Comprenant l´Anatomie, la Physiologie et la Classification de ces Animaux. Encyclopédique Roret Paris III: 638

  • Minemizu R (2013) Coral reef shrimps of Indo-west Pacific. Bun-Ichi Sogoshuppan, Co Ltd: Tokyo

  • Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, Inward DJ, Lees DC, Ranaivosolo R, Eggleton P, Barraclough TG, Vogler AP (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol 58:298–311. https://doi.org/10.1093/sysbio/syp0277

    Article  CAS  Google Scholar 

  • Nomura K, Anker A (2005) The taxonomic identity of Alpheus gracilipes Stimpson, 1860 (Decapoda: Caridea: Alpheidae), with description of five new cryptic species from Japan. Crust Res 34:104–139

    Article  Google Scholar 

  • Olivier AG (1811) Palémon Palaeomon. In: Olivier AG (ed) Insectes Encyclopede Méthodologique d’Histoire Naturelle. 8 pp 652–667

  • Pachelle PPG, Carvalho L, Alves DFR, Anker A (2020) A revision of the Brazilian species of Lysmata Risso, 1816 (Decapoda: Caridea: Lysmatidae), with discussion of the morphological characters used in their identification. Zootaxa. https://doi.org/10.11646/zootaxa.4789.1.2

    Article  Google Scholar 

  • Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fools guide to PCR Version 2.0. Honolulu, HI: Department of Zoology and Kewalo Marine Laboratory, University of Hawaii

  • Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609. https://doi.org/10.1080/10635150600852011

    Article  Google Scholar 

  • Prakash S, Ajith Kumar TT, Raghavan R, Rhyne AL, Tlusty M, Subramoniam T (2017) Marine aquarium trade in India: challenges and opportunities for conservation and policy. Mar Policy 77:120–129. https://doi.org/10.1016/j.marpol.2016.12.020

    Article  Google Scholar 

  • Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21:1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x

    Article  CAS  Google Scholar 

  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) BEAST software-Bayesian evolutionary analysis sampling trees. Tracer V1(6):106

    Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904. https://doi.org/10.1093/sysbio/syy032

    Article  CAS  Google Scholar 

  • Rambaut A, Drummond A (2016) TreeAnnotator v 243 Part of the BEAST package

  • Rencher AC (2002) Principal component analysis. In: Methods of multivariate analysis, second edition. Wiley: New York, NY, USA. p 18

  • Rhyne AL, Lin J (2006) A western Atlantic peppermint shrimp complex: re-description of Lysmata wurdemanni, description of four new species, and remarks on Lysmata rathbunae (Crustacea: Decapoda: Hippolytidae). Bull Mar Sci 79:165–204

    Google Scholar 

  • Ripley BD (1987) Statistical inferences for spatial processes. Cambridge University Press, Cambridge

    Google Scholar 

  • Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  Google Scholar 

  • Rothman SBS, Shlagman A, Galil BS (2013) Saron marmoratus, an indo-pacific marble shrimp (Hippolytidae: Decapoda: Crustacea) in the Mediterranean Sea. Mar Biodiv Rec 6:e129. https://doi.org/10.1017/S1755267213000997

    Article  Google Scholar 

  • SAS Institute (2015) JMP® 12 multivariate methods. Cary, NC: SAS Institute Inc

  • Schubart CD, Neigel JE, Felder DL (2000) Use of the mitochondrial 16S rRNA gene for phylogenetic and population studies of Crustacea. Crustacean Issues 12:817–830

    Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson MAX, Halpern BS, Jorge MA, Lombana AL, Lourie SA, Martin KD (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583. https://doi.org/10.1641/B570707

    Article  Google Scholar 

  • Struck TH, Feder JL, Bendiksby M, Birkeland S, Cerca J, Gusarov VI, Kistenich S, Larsson KH, Liow LH, Nowak MD, Stedje B (2018) Finding evolutionary processes hidden in cryptic species. Trends Ecol Evol 33:153–163. https://doi.org/10.1016/j.tree.2017.11.007

    Article  Google Scholar 

  • Sukumaran K, Knowles LL (2017) Multispecies coalescent delimits structure, not species. Proc Natl Acad Sci USA 114:1607–1612. https://doi.org/10.1073/pnas.1607921114

    Article  CAS  Google Scholar 

  • Swiney KM, Long WC, Foy RJ (2015) Effects of high pCO2 on Tanner crab reproduction and early life history-Part I: long-term exposure reduces hatching success and female calcification, and alters embryonic development. ICES J Mar Sci 73:825–835. https://doi.org/10.1093/icesjms/fsv201

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  • Thallwitz J (1891) Über einige neue indo-pacifische crustaceen. Zool Anz 14:96–103

    Google Scholar 

  • Titus BM, Daly M, Hamilton N, Berumen ML, Baeza JA (2018) Global species delimitation and phylogeography of the circumtropical ‘sexy shrimp’ Thor amboinensis reveals a cryptic species complex and secondary contact in the indo-west pacific. J Biogeo. https://doi.org/10.1111/jbi.13231

    Article  Google Scholar 

  • Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235. https://doi.org/10.1093/nar/gkw256

    Article  CAS  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford Univ. Press, New York

    Book  Google Scholar 

  • Wilson EO (2016) Half-earth: our planet’s fight for life. WW Norton and Company, New York

    Google Scholar 

  • Yang ZH (2015) The BPP program for species tree estimation and species delimitation. Curr Zool 61:854–865. https://doi.org/10.1093/czoolo/61.5.854

    Article  Google Scholar 

  • Yang Z, Rannala B (2014) Unguided species delimitation using DNA sequence data from multiple loci. Mol Biol Evol 31:3125–3135. https://doi.org/10.1093/molbev/msu279

    Article  CAS  Google Scholar 

  • Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876. https://doi.org/10.1093/bioinformatics/btt499

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are most grateful to Gustav Paulay (FLMNH) and Laure Corbari (MNHN) for making material of Saron available for our study. We also thank Jean Lim for setting up the bGMYC package in the Palmetto Cluster at Clemson University. SP acknowledges United States India Educational Foundation (USIEF), New Delhi, and Fulbright Scholar Program, Washington, DC, for the award of a Fulbright-Nehru Post-Doctoral Research Fellowship (no. 2162/FNPDR/2016). This work was also financially supported from EU structural funding Operational Programme Research and Development for Innovation, project n. CZ.1.05/2.1.00/19.0388 (ZĎ), and from the Student grant project sgs/PřF/2020, University of Ostrava (PF). ZĎ and PF also acknowledge Ivona Horká and Eva Glincová (University of Ostrava) for additional molecular and/or biometric studies. A large part of the material studied herein was collected during several ‘Our Planet Reviewed’ expeditions, organized by the Muséum National d’Histoire Naturelle, Paris, France (MNHN). The Papua Niugini / Madang 2012 expedition (PIs: P. Bouchet, C. Payri and S. Samadi) was organized by the MNHN, Pro Natura International, Institut de Recherche pour le Développement, and University of Papua New Guinea (UPNG), with funding from the Total Foundation, Prince Albert II of Monaco Foundation, Foundation EDF, Stavros Niarchos Foundation and Entrepose Contracting, local support from the Divine Word University, and post-expedition support from Agence Nationale de la Recherche (ANR) and National Science Council of Taiwan (ANR-TF-DeepEvo 12 ISV7 005 01). The Papua Niugini / Kavieng 2014 expedition (PIs: P. Bouchet, J. Kinch, C. Payri) was organized by the MNHN and others (as above), with support from Papua New Guinea’s National Fisheries Authority, endorsement from the Nago Island Mariculture and Research Facility and New Ireland Provincial Administration, and with funding from the Total Foundation, the Laboratoire d’Excellence Diversités Biologiques et Culturelles (LabEx BCDiv, ANR-10-LABX-0003-BCDiv), the Programme Investissement d’Avenir (ANR-11-IDEX-0004-02), the Fonds Pacifique and CNRS INEE. Both Papua New Guinea expeditions operated under the Memorandum of Understanding with UPNG and permits delivered by the Papua New Guinea Department of Environment and Conservation. The Australian material was collected as part of several CReefs expeditions (Lizard Island, Heron Island, Ningaloo Reef), organized by Julian Caley (Australian Institute of Marine Science) and with participation of Slava Ivanenko, François Michonneau, Robert Lasley, one of the authors (ZĎ), and others. The French Polynesian material was collected under the Moorea Biocode project, based at the Richard B. Gump South Pacific research station of the University of Berkeley and sponsored by the Biocode Moorea project (http://www.mooreabiocode.org/) through the Gordon and Betty Moore Foundation; some Moorea material was collected by divers Gustav Paulay, Sea McKeon, Jenna Moore, Sarah McPherson, and Chris Meyer. The western Indian Ocean material was collected either as part of the BIOTAS project co-organized by the FLMNH (PI: G. Paulay) and the Université de la Réunion (PI: H. Bruggemann), or as part of a recent survey of the Djibouti reefs, with participation of G. Paulay. Finally, we thank all the photographers who kindly allowed us to use their excellent photographs: Andrey Rianskiy, Mark Strickland (www.markstrickland.com), Ned Deloach, Wei Tan, Gustav Paulay, and Tin-Yam Chan (National Taiwan Ocean University).

Author information

Authors and Affiliations

Authors

Contributions

JAB and AA were responsible for conceptualization, methodology, data curation, writing, original draft preparation, visualization, reviewing and editing. JAB, PS, PF, ZD, AA performed methodology, data curation, writing, reviewing and editing.

Corresponding author

Correspondence to J. Antonio Baeza.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 KB)

Supplementary file2 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baeza, J.A., Prakash, S., Frolová, P. et al. Unweaving a hard taxonomic knot in coral reef dwellers: integrative systematics reveals two parallel cryptic species complexes in ‘marbled’ shrimps of the genus Saron Thallwitz 1891 (Caridea: Hippolytidae). Coral Reefs 42, 157–179 (2023). https://doi.org/10.1007/s00338-022-02317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-022-02317-9

Keywords

Navigation