Skip to main content

Advertisement

Log in

The mass coral bleaching event of inshore corals form South China Sea witnessed in 2020: insight into the causes, process and consequence

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

In August to September 2020, severe sea surface temperature anomalies were recorded for Hainan Island and the Beibu Gulf from South China Sea (SCS) and at the same time an unprecedented mass coral event occurred there, spreading over the fringing reef along the Chinese mainland and around Hainan Island. Field surveys revealed that 81.08% of the 74 surveyed sites were bleached (average bleaching percentage 51.14%), exceeding the historical record for these areas. Percentage bleaching coincided with the cumulative time that corals were exposed to heat stress, as measured by Coral Reef Watch’s satellite Degree Heating Week (DHW). Geographically, western Hainan Island and Weizhou Island incurred more severe bleaching (56.27%) than did eastern Hainan Island (1.26%) even at the same latitude. Intriguingly, a generalized linear model with a binomial error structure demonstrated that DHW was a significant positive predictor of bleaching with 50% bleaching probability at 16.61 °C-weeks which suggested a higher DHW bleaching threshold. A strong negative correlation between DHW and coral cover as well as diversity was found. Further, coral community based on species composition at surveyed sites was dominated by massive/encrusting taxa Goniopora and Porites with high level of bleaching and in contrast genus Acropora showed a strong resistance to heat stress compared with other coral taxa. The follow-up in situ surveys in 2021 revealed there was no loss of coral cover during last year mass bleaching event and falling bleaching percentage was surprisingly observed despite under same level of thermal stress. These results suggest both transformation of coral reef assemblages and coral acclimation may play an important role in resisting extreme heat condition in SCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adjeroud M, Augustin D, Galzin R (2002) Natural disturbances and interannual variability of coral reef communities on the outer slope of Tiahura (Moorea, French Polynesia): 1991 to 1997. Marine Ecology Progress 237:121–131

    Article  Google Scholar 

  • Baird AH, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Marine Ecology Progress 237:133–141

    Article  Google Scholar 

  • Berkelmans R (2006) The role of zooxanthellae in the thermal tolerance of corals : a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc Land B 273:2305–2312

    Google Scholar 

  • Berkelmans R, Willis BL (1999) Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef. Coral Reefs 18:219–228

    Article  Google Scholar 

  • Bleuel J, Pennino MG, Longo GO (2021) Coral distribution and bleaching vulnerability areas in Southwestern Atlantic under ocean warming. Sci Rep 11:12833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs Coral Reefs 16:S129-138

    Article  Google Scholar 

  • Brown BE, Dunne RP, Goodson M, Douglas A (2000) Bleaching patterns in reef corals. Nature 404:142–143

    Article  CAS  PubMed  Google Scholar 

  • Carilli J, Donner SD, Hartmann AC (2012) Historical temperature variability affects coral response to heat stress. PLoS ONE 7:e34418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Yu K, Qi S, Li S, Price GJ, Wang R, Zhao M, Chen T, Zhao J (2009) Twenty-five years of change in scleractinian coral communities of Daya Bay (northern South China Sea) and its response to the 2008 AD extreme cold climate event. Chin Sci Bull 54:2107–2117

    Google Scholar 

  • Couch CS, Burns JHR, Liu G, Steward K, Gutlay TN, Kenyon J, Eakin CM, Kosaki RK (2017) Mass coral bleaching due to unprecedented marine heatwave in Papahanaumokuakea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE 12:e0185121

    Article  PubMed  PubMed Central  Google Scholar 

  • Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G, Alvarez-Filip L, Baca B, Bartels E, Bastidas C, Bouchon C, Brandt M, Bruckner AW, Bunkley-Williams L, Cameron A, Causey BD, Chiappone M, Christensen TR, Crabbe MJ, Day O, de la Guardia E, Diaz-Pulido G, DiResta D, Gil-Agudelo DL, Gilliam DS, Ginsburg RN, Gore S, Guzman HM, Hendee JC, Hernandez-Delgado EA, Husain E, Jeffrey CF, Jones RJ, Jordan-Dahlgren E, Kaufman LS, Kline DI, Kramer PA, Lang JC, Lirman D, Mallela J, Manfrino C, Marechal JP, Marks K, Mihaly J, Miller WJ, Mueller EM, Muller EM, Orozco Toro CA, Oxenford HA, Ponce-Taylor D, Quinn N, Ritchie KB, Rodriguez S, Ramirez AR, Romano S, Samhouri JF, Sanchez JA, Schmahl GP, Shank BV, Skirving WJ, Steiner SC, Villamizar E, Walsh SM, Walter C, Weil E, Williams EH, Roberson KW, Yusuf Y (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5:e13969

    Article  PubMed  PubMed Central  Google Scholar 

  • Edmunds PJ (1994) Evidence that reef-wide patterns of coral bleaching may be the result of the distribution of bleaching-susceptible clones. Mar Biol 121:137–142

    Article  Google Scholar 

  • Facon M, Pinault M, Obura D, Pioch S, Pothin K, Bigot L, Garnier R, Quod JP (2016) A comparative study of the accuracy and effectiveness of Line and Point Intercept Transect methods for coral reef monitoring in the southwestern Indian Ocean islands. Ecol Ind 60:1045–1055

    Article  Google Scholar 

  • Furby KA, Bouwmeester J, Berumen ML (2013) Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 32:505–513

    Article  Google Scholar 

  • Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17

    Article  Google Scholar 

  • Glynn PW, D’Croz L (1990) Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8:181–191

    Article  Google Scholar 

  • Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD, Schoepf V, McGinley M, Baumann J, Matsui Y (2014) The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Chang Biol 20:3823–3833

    Article  PubMed  Google Scholar 

  • Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ, Yewdall K, Affendi YA, Chou LM (2012) Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7:e33353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison HB, Lvarez-Noriega M, Baird AH, Heron SF, Hughes TP (2018) Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs 38:713–719

    Article  Google Scholar 

  • Heron S, Eakin CM, Douvere F (2017) Impacts of climate change on world heritage coral reefs: a first global scientific assessment. United Nations Educational Scientific and Cultural Organization (UNESCO). https://repository.library.noaa.gov/view/noaa/16386

  • Hill J, Wilkinson C (2004) Methods for Ecological Monitoring of Coral Reefs: A Resource for Managers. Australian Institute of Marine Sciences. https://gcrmn.net/wp-content/uploads/2018/04/GCRMN_Ecological_monitoring.pdf

  • Huang L-M, Tan Y-H, Song X-Y, Huang X-P, Wang H-K, Zhang S, Dong J-D, Chen R-Y (2003) The status of the ecological environment and a proposed protection strategy in Sanya Bay, Hainan Island, China. Mar Pollut Bull 47:180–186

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Zhang CL, Yang JH, Feng Y, Lian JS, Tan YH (2012) Scleractinian coral community characteristics in Zhubi reef sea area of Nansha Islands. Journal of Oceanography in Taiwan Strait 31:79–84

    Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JB, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Huang H, Young MA (2013) The wicked problem of China’s disappearing coral reefs. Conserv Biol 27:261–269

    Article  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Alvarez-Noriega M, Alvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs JA, Hoogenboom MO, Kennedy EV, Kuo CY, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Connolly SR, Baird AH, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Jacobson M, Liu G, Pratchett MS, Skirving W, Torda G (2018a) Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat Clim Chang 9:40–43

    Article  Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018b) Global warming transforms coral reef assemblages. Nature 556:492–496

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs JA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018c) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83

    Article  CAS  PubMed  Google Scholar 

  • Iliana C, Susana E, Mumby PJ, Ferse SCA (2014) Redefining Thermal Regimes to Design Reserves for Coral Reefs in the Face of Climate Change. PLoS ONE 9:e110634

    Article  Google Scholar 

  • Jiang L, Zhou G-W, Zhang Y-Y, Lei X-M, Yuan T, Guo M-L, Yuan X-C, Lian J-S, Liu S, Huang H (2021) Plasticity of symbiont acquisition in new recruits of the massive coral Platygyra daedalea under ocean warming and acidification. Coral Reefs 40:1563–1576

    Article  Google Scholar 

  • Jing Z-Y, Qi Y-Q, Hua Z-L, Zhang H (2009) Numerical study on the summer upwelling system in the northern continental shelf of the South China Sea. Cont Shelf Res 29:467–478

    Article  Google Scholar 

  • Kennedy J, Blunden J, Alvar-Beltrán J, Kappelle M (2021) State of the Global Climate 2020. World Meteorological Organization. https://public.wmo.int/en/our-mandate/climate/wmo-statement-state-of-global-climate

  • Lachs L, Sommer B, Cant J, Hodge JM, Malcolm HA, Pandolfi JM, Beger M (2021) Linking population size structure, heat stress and bleaching responses in a subtropical endemic coral. Coral Reefs 40:777–790

    Article  Google Scholar 

  • Lesser MP, Stochaj WR, Tapley DW, Shick JM (1990) Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232

    Article  Google Scholar 

  • Li X, Liu S, Huang H, Huang L, Jing Z, Zhang C (2012) Coral bleaching caused by an abnormal water temperature rise at Luhuitou fringing reef, Sanya Bay, China. Aquat Ecosyst Health Manage 15:227–233

    Article  CAS  Google Scholar 

  • Liu G, Skirving WJ, Geiger EF, De La Cour JL, Marsh BL, Heron SF, Tirak KV, Strong AE, Eakin CM (2016) NOAA Coral reef watch’s 5 km satellite coral bleaching heat stress monitoring product suite version 3 and four-month outlook version 4. Reef Encounter 45(32):39–45

    Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, Van Woesik R (2001) Coral bleaching:the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Mcclanahan TR, Darling ES, Maina JM, Muthiga NA, ’Agata SD, Jupiter SD, Arthur R, Wilson SK, Mangubhai S, Nand Y, (2019) Temperature patterns and mechanisms influencing coral bleaching during the 2016 El Nio. Nat Clim Chang 9:845–851

    Article  Google Scholar 

  • Monroe AA, Ziegler M, Roik A, Rothig T, Hardenstine RS, Emms MA, Jensen T, Voolstra CR, Berumen ML (2018) In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLoS ONE 13:e0195814

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison TH, Hughes TP, Adgerl WN, Brown K, Barnett J, Lemos MC (2019) Save reefs to resue all ecosystems. Nature 573:333–336

    Article  CAS  PubMed  Google Scholar 

  • Muniz-Castillo AI, Arias-Gonzalez JE (2021) Drivers of coral bleaching in a Marine Protected Area of the Southern Gulf of Mexico during the 2015 event. Mar Pollut Bull 166:112256

    Article  CAS  PubMed  Google Scholar 

  • Oliver J, Berkelmans R, Eakin CM (2008) Coral Bleaching in Space and Time. Springer, Berlin Heidelberg

    Google Scholar 

  • Oppen M, Lough JM (2009) Coral bleaching : patterns, processes, causes and consequences, Berlin, Heidelberg

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, Mcardle D, Mcdlenachan L, Newman M, Des GP (2003) Global Trajectories of the Long-term Decline of Coral Reef Ecosystems. Science 301:955–958

    Article  CAS  PubMed  Google Scholar 

  • Pratchett MS, McCowan D, Maynard JA, Heron SF (2013) Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea. French Polynesia Plos One 8:e70443

    Article  CAS  PubMed  Google Scholar 

  • Qin Z, Yu K, Liang Y, Chen B, Huang X (2020) Latitudinal variation in reef coral tissue thickness in the South China Sea: Potential linkage with coral tolerance to environmental stress. Sci Total Environ 711:134610

    Article  CAS  PubMed  Google Scholar 

  • Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742

    Article  CAS  PubMed  Google Scholar 

  • Safaie A, Silbiger NJ, McClanahan TR, Pawlak G, Barshis DJ, Hench JL, Rogers JS, Williams GJ, Davis KA (2018) High frequency temperature variability reduces the risk of coral bleaching. Nat Commun 9:1671

    Article  PubMed  PubMed Central  Google Scholar 

  • Skirving W, Marsh B, De La Cour J, Liu G, Harris A, Maturi E, Geiger E, Eakin CM (2020) CoralTemp and the Coral Reef Watch Coral Bleaching Heat Stress Product Suite Version 3.1. Remote Sensing 12

  • Souter D, Planes S, Wicquart J, Logan M, Obura D and Staub F (2021) Status of Coral Reefs of the World: 2020 Executive Summary. Global corals reef monitoring network. https://gcrmn.net/wp-content/uploads/2021/10/Chapter-7.-Status-and-trends-of-coral-reefs-of-the-East-Asian-Seas-region.pdf

  • Sully S, Burkepile DE, Donovan MK, Hodgson G, van Woesik R (2019) A global analysis of coral bleaching over the past two decades. Nat Commun 10:1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, Bourne DG, Cantin N, Foret S, Matz M (2017) Rapid adaptive responses to climate change in corals. Nat Clim Chang 7:627–636

    Article  Google Scholar 

  • Yee SH, Santavy DL, Barron MG (2008) Comparing environmental influences on coral bleaching across and within species using clustered binomial regression. Ecol Model 218:162–174

    Article  Google Scholar 

  • Yonge CM, Nicholls AG (1931) Studies on the physiology of corals. IV. The structure, distribution and physiology of the zooxanthellae. Sci Rep Great Barrier Reef Exped 1:177–211

    Google Scholar 

  • Yu K (2012) Coral reefs in the South China Sea: Their response to and records on past environmental changes. Science China: Earth Science 55:13

    Article  Google Scholar 

  • Yu X, Yu K, Huang W, Liang J, Liao Z (2020) Thermal acclimation increases heat tolerance of the scleractinian coral Acropora pruinosa. Sci Total Environ 733:139139

    Article  Google Scholar 

  • Yu X, Yu K, Chen B, Liao Z, Liang J, Yao Q, Qin Z, Wang H, Yu J (2021) Different responses of scleractinian coral Acropora pruinosa from Weizhou Island during extreme high temperature events. Coral Reefs 40:1697–1711

    Article  Google Scholar 

  • Zhao M, Yu K, Zhang Q, Shi Q (2010) Long-term change in coral cover in Luhuitou fringing reef, Sanya. Oceanologia Et Limnologia Sinica 41:440–447

    Google Scholar 

Download references

Acknowledgements

This work was supported by National investigation on coral reefs ecology (GASI-01-SHJDC), Hainan Provincial Key R&D Program (ZDYF2021SHFZ059). We are deeply grateful to the North Sea Marine Environmental Monitoring Center, State Oceanic Administration for help of some field work. The authors would like to thank the editor and reviewers for their assistance in the manuscript revision process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihua Zhou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Morgan S. Pratchett.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Y., Zhou, Z., Zhang, Y. et al. The mass coral bleaching event of inshore corals form South China Sea witnessed in 2020: insight into the causes, process and consequence. Coral Reefs 41, 1351–1364 (2022). https://doi.org/10.1007/s00338-022-02284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-022-02284-1

Keywords

Navigation