Skip to main content
Log in

Karyotypic mosaicism and molecular cytogenetic markers in the scleractinian coral Acropora pruinosa Brook, 1982 (Hexacorallia, Anthozoa, Cnidaria)

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Molecular cytogenetic investigation was carried out on the scleractinian coral, Acropora pruinosa (A. pruinosa). Conventional Giemsa staining techniques for karyotyping, such as G- and C-banding, were conducted. Karyotype analysis showed mosaicism of cells with two different chromosome numbers, 28 and 29, in the same embryo. The C-band positive portions appeared on the centromeres of most chromosomes and along the entire length of the unpaired chromosome 15 in cells with 29 chromosomes. Fluorescence in situ hybridization (FISH) revealed that the loci of rRNA genes (rDNA), 5S and 18S/28S, were located on chromosomes 4 and 2, respectively. Whole genome hybridization (WGH) with sperm DNA showed distinct signals not only on all centromeric regions but also on a whole unpaired chromosome 15. Comparative genomic hybridization (CGH) using DNAs from sperm and unfertilized eggs revealed that the unpaired chromosome 15 has sperm-specific DNA sequences. We therefore hypothesized the existence of a sex-related chromosome in A. pruinosa. In this study, we have presented a tentative karyotype of this coral, based on banding results, and described FISH, WGH, and CGH results. Moreover, we successfully cloned and sequenced three clones; AP-5S for 5S rDNA, AP-18S for 18S/28S rDNA, and AP-unpaired chromosome 15q for the unpaired chromosome 15-specific DNA. These molecular cytogenetic approaches will help establish a more exact karyotype of corals and promote understanding of coral genetics, including chromosome evolution. These findings will help to verify the method of classification of complex scleractinian corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Biedler JL, Spengler BA (1976) A novel chromosome abnormality in human neuroblastoma and antifolate-resistant Chinese hamster cell lives in culture. J Natl Cancer Inst: 683–695

  • Chen CA, Odorico DM, ten Lohuis M, Veron JEN, Miller DJ (1995) Systematic relationships within the Anthozoa (Cnidaria: Anthozoa) using the 5′-end of the 28S rDNA. Mol Phylogenet Evol 4:175–183

    Article  CAS  Google Scholar 

  • Chen CA, Wallace CC, Yu JK, Wei NV (2000) Strategies for amplification by polymerase chain reaction of the complete sequence of the gene encoding nuclear large subunit ribosomal RNA in corals. Mar Biotechnol 2:558–570

    Article  CAS  Google Scholar 

  • Comings (1978) Mechanisms of chromosome banding and applications for chromosome structure. Ann Rev Genet 12:25–46

    Article  CAS  Google Scholar 

  • Faith DP, Richards ZT (2012) Climate change impacts on the tree of life: Changes in phylogenic diversity illustrated for Acropora corals. Biology 1:906–932

    Article  Google Scholar 

  • Flot JF, Ozouf-Costaz C, Tsuchiya M, van Woesik R (2006) Comparative coral cytogenetics. Proc 10th Int Coral Reef Symp 1:4–8

  • Fukami H (2008) Short review: molecular phylogenetic analyses of reef corals. Galaxea 10:47–55

    Article  Google Scholar 

  • Fukami H, Budd AF, Paulay G, Sole-Cava A, Chen CA, Iwao K, Knowlton N (2004) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835

    Article  CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  CAS  Google Scholar 

  • Kenyon JC (1997) Models of reticulate evolution in the coral genus Acropora based on chromosome numbers: parallels with plants. Evolution 51:756–767

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33:1870–1874

    Article  CAS  Google Scholar 

  • Marahrens Y, Stillman B (1992) A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:817–823

    Article  CAS  Google Scholar 

  • Marquez LM, Miller DJ, MacKenzie JB, Van Oppen MJ (2003) Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. Mol Biol Evol 20:1077–1108

    Article  CAS  Google Scholar 

  • Martínez DE, Iñiguez AR, Percell KM, Willner JB, Signorovitch J, Campbell RD (2010) Phylogeny and biogeography of Hydra (Cnidaria: Hydridae) using mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 57:403–410

    Article  Google Scholar 

  • Nishihira M, Veron JEN (1995) Hermatypic corals of Japan. Kaiyusha, Tokyo, 439 pp (in Japanese)

  • Odorico D, Miller DJ (1997) Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria: Scleractinia): variation consistent with reticulate evolution. Mol Biol Evol 14:465–473

    Article  CAS  Google Scholar 

  • Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Döhner H, Cremer T, Lichter P (1998) Matrix-based comparative genomic hybridization: Biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:399–407

    Article  Google Scholar 

  • Stover NA, Steele RE (2001) Trans-spliced leader addition to mRNAs in a cnidarian. Proc Natl Acad Sci USA 98:5693–5698

    Article  CAS  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Article  CAS  Google Scholar 

  • Suntronpong A, Thapana W, Twilprawat P, Prakhongcheep O, Somyong S, Muangmai S, Peyachoknagul S, Srikulnath K (2017) Karyological characterization and identification of four repetitive element groups (the 18S-28S rRNA gene, telomeric sequences, microsatellite repeat motifs, Rex retroelements) of the Asian swamp eel (Monopterus albus). Comp Cytogenet 11:435–462

    Article  Google Scholar 

  • Suzuki G, Fukami H (2012) Evidence of genetic and reproductive isolation between two morphs of subtropical-dominant coral Acropora solitaryensis in the non-reef region of Japan. Zoolog Sci 29:134–140

    Article  Google Scholar 

  • Taguchi T, Bellacosa A, Zhou JY, Gilbert DJ, Lazo PA, Copeland NG, Jenkins NA, Tsichlis PN, Testa JR (1993) Chromosomal localization of the Ox-44 (CD53) leukocyte antigen gene in man and rodents. Cytogenet Cell Genet 64:217–221

    Article  CAS  Google Scholar 

  • Taguchi T, Kubota S, Mezaki T, Sekida S, Okuda K, Nakachi S, Shinbo S, Iiguni Y, Tominaga A (2013) Detection of characteristic heterochromatin distribution, highly amplified rRNA genes and presence of the human satellite III DNA motif in the scleractinian coral Echinophyllia aspera Ellis and Solander 1788. Chromosome Science 16:33–38

    CAS  Google Scholar 

  • Taguchi T, Mezaki T, Iwase F, Sekida S, Kubota S, Fukami H, Okuda K, Shinbo T, Oshima S, Iiguni Y, Testa JR, Tominaga A (2014) Molecular cytogenetic analysis of the scleractinian coral Acropora solitaryensis Veron & Wallace 1984. Zoolog Sci 31:89–94

    Article  CAS  Google Scholar 

  • Taguchi T, Kubota S, Mezaki T, Tagami E, Sekida S, Nakachi S, Okuda K, Tominaga A (2016) Identification of homogeneously staining regions by G-banding and chromosome microdissection, and FISH marker selection using human Alu sequence primers in a scleractinian coral Coelastrea aspera Verrill, 1866 (Cnidaria). Comp Cytogenet 10:61–75

    Article  Google Scholar 

  • Taguchi T, Kubota S, Tagami E, Mezaki T, Sekida S, Okuda K, Tominaga A (2017a) Molecular cytogenetic analysis and isolation of a 5S rRNA- related marker in the scleractinian coral Platygyra contorta Veron 1990 (Hexacorallia, Anthozoa, Cnidaria). Cytologia 82:205–212

    Article  Google Scholar 

  • Taguchi T, Tagami E, Mezaki T, Sekida S, Chou Y, Soong K, Okuda K, Tominaga A, Kubota S (2017b) Recent progress of molecular cytogenetic study on scleractinian (stony) corals. <Mini Review Article> Kuroshio Science 11:73–81

  • Takaoka E, Sonobe H, Akimaru K, Sakamoto S, Shuin T, Daibata M, Taguchi T, Tominaga A (2012) Multiple sites of highly amplified DNA sequences detected by molecular cytogenetic analysis in HS-RMS-2, a new pleomorphic rhabdomyosarcoma cell line. Am J Cancer Res 2:141–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanomtong A, Chaveerach A, Phanjun G, Kaensa W, Khunsook S (2005) New records of chromosomal features in Indian Muntjacs (Muntiacus muntjak) and Fea’s Muntjacs (M. feae) of Thailand. Cytologia 70:71–77

    Article  Google Scholar 

  • van Oppen MJH, Koolmees EM, Veron JEN (2004) Patterns of evolution in the scleractinian coral genus Montipora (Acroporidae). Marine Biology 144:9–18

    Article  Google Scholar 

  • Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, Eussen BE, van Ommen G-JB, Blonden LAJ, Riggins GJ, Kunst CB, Galjaard H, Caskey CT, Warren ST (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914

    Article  CAS  Google Scholar 

  • Veron JEN (2000) Corals of the World. Vol 3 Townsville Australian Institute of Marine Sciences. 1382 pp

  • Veron JEN, Hodgson G (1989) Annotated checklist of the hermatypic corals of the Philippines. Pacific Science 43:234–287

    Google Scholar 

  • Wallace CC (2012) Revision and catalogue of worldwide staghorn corals Acropora and Isopora (Scleractinia: Acroporidae) in the museum of tropical Queensland. Nature 57:1–255

    Google Scholar 

  • Wei N-WV, Wallace CC, Dai C-F, Pillay KRM, Chen CA (2006) Analyses of the ribosomal internal transcribed spacers (ITS) and the 5.8S gene indicate that extremely high rDNA heterogeneity is a unique feature in the scleractinian coral genus Acropora (Scleractinia; Acroporidae). Zoological Studies 45:404–418

    CAS  Google Scholar 

  • Wurster DH, Benirschke K (1970) Indian Muntjac, Muntjak: A deer with low diploid chromosome number. Science 168:1364–1366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Japan Society for Promotion of Science (26292107 and 15K14789: to TT). We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Taguchi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Morgan S. Pratchett

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguchi, T., Tagami, E., Mezaki, T. et al. Karyotypic mosaicism and molecular cytogenetic markers in the scleractinian coral Acropora pruinosa Brook, 1982 (Hexacorallia, Anthozoa, Cnidaria). Coral Reefs 39, 1415–1425 (2020). https://doi.org/10.1007/s00338-020-01975-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-020-01975-x

Keywords

Navigation