Skip to main content

Advertisement

Log in

Seasonal controls on the diet, metabolic activity, tissue reserves and growth of the cold-water coral Lophelia pertusa

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Vast cold-water coral (CWC) reefs occur in temperate regions, where strong seasonality in temperature and light leads to a short but highly productive spring period. How CWCs respond physiologically to this strong seasonal forcing remains unclear, due to the remoteness of their deep-sea habitats. In an in situ transplantation study at Nakken reef, Norway, we investigated a full seasonal cycle of (1) temperature and food availability, (2) diet, (3) biomass and tissue reserves, (4) oxygen consumption and (5) linear growth of the reef-building coral Lophelia pertusa. All investigated variables showed a distinct seasonality. An increase in the organic carbon and amino acid content, linear extension and budding rate from February to late May, at a simultaneous increase in phytoplankton and zooplankton fatty acid trophic markers (FATMs), and δ15N-derived trophic level, indicates an efficient exploitation of the spring phytoplankton and the subsequent zooplankton bloom. A pool of neutral-lipid-derived fatty acids, indicative of energy storage and gametogenesis, was formed from May to October, accompanied by increased oxygen consumption, i.e. metabolic activity. In late autumn and early winter (October–December), tissue reserves were maintained, in spite of low sPOM and zooplankton food availability, and the lower tissue δ13C and higher contribution of bacterial FATMs suggest increased reliance on more degraded material. The concurrent reduction in linear growth further suggests a lower energy availability at this time of the year. A large (> 50%) drop of all tissue pools between December and February coincided with the spawning season of L. pertusa and demonstrates a high energetic cost of reproduction. Our results show for the first time a strong seasonal control of critical life history traits such as growth patterns and timing of reproduction in this prominent deep-sea species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All raw data are available at ‘10.5281/zenodo.3566881 and as Online Resource S3’.

References

  • Addamo AM, Vertino A, Stolarski J, García-Jiménez R, Taviani M, Machordom A (2016) Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol 16:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albretsen J (2011) NorKyst-800 report no. 1: user manual and technical descriptions. Fisken og havet, Hardangerfjord

    Google Scholar 

  • Anthony KRN, Connolly SR, Willis BL (2002) Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol Oceanogr 47:1417–1429

    Article  Google Scholar 

  • Bakke JLW, Sands NJ (1977) Hydrographical studies of Korsfjorden, western Norway, in the period 1972–1977. Sarsia 63:7–16

    Article  Google Scholar 

  • Billett DSM, Lampitt RS, Rice AL, Mantoura RFC (1983) Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302:520

    Article  CAS  Google Scholar 

  • Blaud A, Lerch TZ, Chevallier T, Nunan N, Chenu C, Brauman A (2012) Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw. Appl Soil Ecol 53:1–9

    Article  Google Scholar 

  • Bopp L, Monfray P, Aumont O, Dufresne J-L, Le Treut H, Madec G, Terray L, Orr JC (2001) Potential impact of climate change on marine export production. Global Biogeochem Cycles 15:81–89

    Article  CAS  Google Scholar 

  • Boschker HTS, de Brouwer JFC, Cappenberg TE (1999) The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309–319

    Article  Google Scholar 

  • Braarud T (1974) The natural history of the Hardangerfjord. Sarsia 55:99–114

    Article  Google Scholar 

  • Braarud T, Föyn Hofsvang B, Hjelmfoss P, Aa-K Överlanda (1974) The natural history of the Hardangerfjord 10. The phytoplankton in 1955–56. The quantitative phytoplankton cycle in the fjord waters and in the offshore coastal waters. Sarsia 55:63–98

    Article  Google Scholar 

  • Brooke S, Järnegren J (2013) Reproductive periodicity of the scleractinian coral Lophelia pertusa from the Trondheim Fjord, Norway. Mar Biol 160:139–153

    Article  Google Scholar 

  • Brooke S, Young CM (2009) In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar Ecol Prog Ser 397:153–161

    Article  Google Scholar 

  • Carlier A, Le Guilloux E, Olu K, Sarrazin J, Mastrototaro F, Taviani M, Clavier J (2009) Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Mar Ecol Prog Ser 397:125–137

    Article  CAS  Google Scholar 

  • Chikaraishi Y, Ogawa NO, Kashiyama Y, Takano Y, Suga H, Tomitani A, Miyashita H, Kitazato H, Ohkouchi N (2009) Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol Oceanogr Methods 7:740–750

    Article  CAS  Google Scholar 

  • Dalsgaard J, St. John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. In: Southward AJ, Tyler PA, Young CM, Fuiman LA (eds) Advances in marine biology. Elsevier, Amsterdam, pp 225–340

    Google Scholar 

  • Dodds LA, Black KD, Orr H, Roberts JM (2009) Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Mar Ecol Prog Ser 397:113–124

    Article  CAS  Google Scholar 

  • Dodds LA, Roberts JM, Taylor AC, Marubini F (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol 349:205–214

    Article  CAS  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Berghuis EM (2004) Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Mar Ecol Prog Ser 277:13–23

    Article  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Bergman MJN, De Stigter H, Mienis F (2007) Trophic structure of a cold-water coral mound community (Rockall Bank, NE Atlantic) in relation to the near-bottom particle supply and current regime. Bull Mar Sci 81:449–467

    Google Scholar 

  • Falk-Petersen S, Dahl TM, Scott CL, Sargent JR, Gulliksen B, Kwasniewski S, Hop H, Millar R-M (2002) Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Mar Ecol Prog Ser 227:187–194

    Article  CAS  Google Scholar 

  • Frederiksen R, Jensen A, Westerberg H (1992) The distribution of the scleractinian coral Lophelia pertusa around the Faroe islands and the relation to internal tidal mixing. Sarsia 77:157–171

    Article  Google Scholar 

  • Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G, Billett D, Hebbeln D, Joergensen BB, Schlueter M, van Weering TCE (eds) Ocean Margin Systems. Springer-Verlag, Berlin, pp 365–385

    Chapter  Google Scholar 

  • Fry B (2006) Stable isotope ecology. Springer, New York

    Book  Google Scholar 

  • Gori A, Viladrich N, Gili J-M, Kotta M, Cucio C, Magni L, Bramanti L, Rossi S (2012) Reproductive cycle and trophic ecology in deep versus shallow populations of the Mediterranean gorgonian Eunicella singularis (Cap de Creus, northwestern Mediterranean Sea). Coral Reefs 31:823–837

    Article  Google Scholar 

  • Grosse J, van Breugel P, Boschker HTS (2015) Tracing carbon fixation in phytoplankton-compound specific and total 13C incorporation rates. Limnol Oceanogr Methods 13:288–302

    Article  CAS  Google Scholar 

  • Gundersen KR (1953) Zooplankton investigations in some fjords in Western Norway during 1950–1951. Fiskiiridirektoratets skrifter, Serie Havundersoekelser (Report on Norwegian Fishery and Marine. Investigations) 10(6):1–54

    Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the World 25: Coral Reefs. Elsevier, New York, pp 133–196

  • Howell KL, Pond DW, Billett DSM, Tyler PA (2003) Feeding ecology of deep-sea seastars (Echinodermata: Asteroidea): a fatty-acid biomarker approach. Mar Ecol Prog Ser 255:193–206

    Article  CAS  Google Scholar 

  • Husa V, Kutti T, Ervik A, Sjøtun K, Hansen PK, Aure J (2014a) Regional impact from fin-fish farming in an intensive production area (Hardangerfjord, Norway). Mar Biol Res 10:241–252

    Article  Google Scholar 

  • Husa V, Steen H, Sjøtun K (2014b) Historical changes in macroalgal communities in Hardangerfjord (Norway). Mar Biol Res 10:226–240

    Article  Google Scholar 

  • Jónasdóttir SH, Visser AW, Richardson K, Heath MR (2015) Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. PNAS 112:12122–12126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly JR, Scheibling RE (2012) Fatty acids as dietary tracers in benthic food webs. Mar Ecol Prog Ser 446:1–22

    Article  CAS  Google Scholar 

  • Kiriakoulakis K, Fisher E, Wolff G, Freiwald A, Grehan A, Roberts J (2005) Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their nutrition. In: Freiwald A, Roberts J (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 715–729

    Chapter  Google Scholar 

  • Larsson AI, Järnegren J, Strömberg SM, Dahl MP, Lundälv T, Brooke S (2014) Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS One 9:e102222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson AI, Lundälv T, van Oevelen D (2013) Skeletal growth, respiration rate and fatty acid composition in the cold-water coral Lophelia pertusa under varying food conditions. Mar Ecol Prog Ser 483:169–184

    Article  Google Scholar 

  • Lavaleye M, Duineveld G, Lundälv T, White M, Guihen D, Kiriakoulakis K, Wolff GA (2009) Cold-water corals on the Tisler reef: preliminary observations on the dynamic reef environment. Oceanography 22:76–84

    Article  Google Scholar 

  • Lie U (1967) The natural history of the Hardangerfjord 8. Quantity and composition of the zooplankton, September 1955–September 1956. Sarsia 30:49–74

    Article  Google Scholar 

  • Maier C, Hegeman J, Weinbauer MG, Gattuso J-P (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1875–1901

    Article  Google Scholar 

  • Maier SR, Kutti T, Bannister RJ, van Breugel P, van Rijswijk P, van Oevelen D (2019) Survival under conditions of variable food availability: resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol Oceanogr 9999:1–21

    Google Scholar 

  • Martinez Arbizu P (2019) pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.3

  • McClelland JW, Montoya JP (2002) Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83:2173–2180

    Article  Google Scholar 

  • McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change 2:623–627

    Article  CAS  Google Scholar 

  • Michener R, Lajtha K (2008) Stable isotopes in ecology and environmental science. Blackwell, Hoboken

    Google Scholar 

  • Middelburg JJ, Mueller CE, Veuger B, Larsson AI, Form A, van Oevelen D (2015) Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Sci Rep 5(17962):1–9

    Google Scholar 

  • Miller TW, Brodeur RD, Rau GH (2008) Carbon stable isotopes reveal relative contribution of shelf-slope production to the Northern California Current pelagic community. Limnol Oceanogr 53:1493–1503

    Article  CAS  Google Scholar 

  • Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (scleractinia) and selected associated invertebrates. Ophelia 54:83–104

    Article  Google Scholar 

  • Mueller CE, Larsson AI, Veuger B, Middelburg JJ, Van Oevelen D (2014) Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa. Biogeosciences 11:123–133

    Article  Google Scholar 

  • Ogle DH, Wheeler P, Dinno A (2018) FSA: fisheries stock analysis. R package version 0.8.22. https://github.com/droglenc/FSA. Accessed 2 Feb 2019

  • Oksanen J, Blanchet GF, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan

  • Oku H, Yamashiro H, Onaga K, Sakai K, Iwasaki H (2003) Seasonal changes in the content and composition of lipids in the coral Goniastrea aspera. Coral Reefs 22:83–85

    Article  Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    Article  PubMed  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 13 Apr 2017

  • Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  CAS  PubMed  Google Scholar 

  • Soetaert K, Mohn C, Rengstorf A, Grehan A, van Oevelen D (2016) Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity. Sci Rep 6:35057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiem Ø, Ravagnan E, Fosså JH, Berntsen J (2006) Food supply mechanisms for cold-water corals along a continental shelf edge. J Mar Syst 60:207–219

    Article  Google Scholar 

  • Van Engeland T, Godø OR, Johnsen E, Duineveld GCA, van Oevelen D (2019) Cabled ocean observatory data reveal food supply mechanisms to a cold-water coral reef. Prog Oceanogr 172:51–64

    Article  Google Scholar 

  • van Oevelen D, Duineveld GCA, Lavaleye MSS, Kutti T, Soetaert K (2018) Trophic structure of cold-water coral communities revealed from the analysis of tissue isotopes and fatty acid composition. Mar Biol Res 14:287–306

    Article  Google Scholar 

  • Veuger B, Middelburg JJ, Boschker HTS, Houtekamer M (2005) Analysis of 15N incorporation into d-alanine: a new method for tracing nitrogen uptake by bacteria. Limnol Oceanogr Methods 3:230–240

    Article  CAS  Google Scholar 

  • Viladrich N, Bramanti L, Tsounis G, Chocarro B, Martínez-Quitana A, Ambroso S, Madurell T, Rossi S (2016) Variation in lipid and free fatty acid content during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder. Coral Reefs 35:1033–1045

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the crew of the RV H. Mosby and RV G.O. Sars and the pilots of the ROV Aglantha. We would like to thank Peter van Breugel and Pieter van Rijswijk (NIOZ) for their help in chemical analysis. Funding was provided by the Royal Netherlands Academy of Arts and Sciences (KNAW) Fund (KNAWWF/807/19022 to SRM), the Netherlands Organisation for Scientific Research (VIDI Grant 864.13.007 to DvO) and the Norwegian Research Council (RCN Project No. 244604/E40 to TK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandra R. Maier or Dick van Oevelen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Mark R. Patterson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dick van Oevelen and Tina Kutti shared last authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, S.R., Bannister, R.J., van Oevelen, D. et al. Seasonal controls on the diet, metabolic activity, tissue reserves and growth of the cold-water coral Lophelia pertusa. Coral Reefs 39, 173–187 (2020). https://doi.org/10.1007/s00338-019-01886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-019-01886-6

Keywords

Navigation