Skip to main content

Advertisement

Log in

CFD modelling of wave damping over a fringing reef in the Colombian Caribbean

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The understanding of physical processes over submerged reefs represents an important ongoing research topic when considering wave energy dissipation and coastal protection that these environments provide. Detailed analyses are required to assess wave damping based on the contribution of reef roughness and wave breaking. For this purpose, the CFD (computational fluid dynamics) toolbox OpenFOAM® is applied to simulate the wave energy dissipation process over reefs with explicit accounting for the complexities of coral shape instead of commonly applied parameterized approaches for bottom roughness and wave breaking. Model validation was performed through comparison with field measurements over a reef profile of Tesoro Island in the Colombian Caribbean. Quantitative analysis of wave damping caused by wave breaking and reef roughness was conducted for (1) moderate and extreme wave conditions, (2) smooth and rough seabed configurations and (3) changes in the water depth over the reef crest. Wave height attenuation is found to vary along the reef profile reaching differences of up to 55% between smooth and rough reef surface scenarios, particularly for moderate wave conditions. Wave breaking, high turbulent flows and detachment of undertow currents are among the reef roughness effects on hydrodynamics. The fore-reef terrace and the reef crest are identified as the most critical zones where dissipation takes place. Wave breaking from rough seabeds provides a global wave attenuation of 75.4–94.8%, with the reef roughness alone accounting for ~ 4–14%. Under extreme wave height scenarios, the wave damping from reef roughness is not significant. Further predictions regarding roughness effects on the reef hydrodynamics, wave set-up and undertow currents for moderate and extreme wave climate conditions are also shown. Directions for future research using CFD are presented to address limitations that arise from the limited span-wise domain in our approach that prevents development of large lateral coherent structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andrade CA, Thomas YF, Lerma AN, Durand P, Anselme B (2013) Coastal flooding hazard related to swell events in Cartagena de Indias, Colombia. J Coast Res 290:1126–1136

    Article  Google Scholar 

  • Baldock T, Golshani A, Callaghan DP, Saunders MI, Mumby PJ (2014) Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs. Mar Pollut Bull 83:155–164

    Article  CAS  PubMed  Google Scholar 

  • Battjes JA (1974) Surf similarity. Proc 14th Int Conf Coast Eng ASCE, Copenhagen 466–480

  • Bernal G, Osorio AF, Urrego L, Peláez D, Molina E, Zea S, Montoya RD, Villegas N (2016) Occurrence of energetic extreme oceanic events in the Colombian Caribbean coasts and some approaches to assess their impact on ecosystems. J Mar Syst 164:85–100

    Article  Google Scholar 

  • Buckley ML, Lowe RJ, Hansen JE, Van Dongeren AR (2016) Wave Setup over a Fringing Reef with Large Bottom Roughness. J Phys Oceanogr 46:2317–2333

    Article  Google Scholar 

  • Burke L, Reytar K, Spalding M, Perry A (2011) Reefs at risk revisited. World Resources Institute, Washington

    Google Scholar 

  • Cendales MH, Sea S, Díaz JM (2002) Geomorfología y unidades ecológicas del complejo de arrecifes de las Islas del Rosario y Barú (Mar Caribe, Colombia). Rev Académica Colomb Cienc XXVI:497–510

  • Chen LF, Zang J, Hillis AJ, Morgan GCJ, Plummer AR (2014) Numerical investigation of wave–structure interaction using OpenFOAM. Ocean Eng 88:91–109

    Article  Google Scholar 

  • Chopakatla SC, Lippmann TC, Richardson JE (2008) Field verification of a computational fluid dynamics model for wave transformation and breaking in the surf zone. J Waterw Port, Coastal, Ocean Eng 134:71–80

    Article  Google Scholar 

  • Demirbilek Z, Nwogu OB (2007) Boussinesq modeling of wave propagation and runup over fringing coral reefs, Model Evaluation Report. Surge Wave Isl Model Stud Progr Coast Inlets Res Progr ERDC/CHL TR-07-12

  • Demirbilek Z, Nwogu OG, Ward DL, Sánchez A (2009) Wave transformation over reefs: evaluation of One-Dimensional numerical models

  • Falter JL, Atkinson MJ, Merrifield MA (2004) Mass-transfer limitation of nutrient uptake by a wave-dominated reef flat community. Limonology Oceanogr 49:1820–1831

    Article  CAS  Google Scholar 

  • Fang K, Yin J, Liu Z, Sun J, Zou Z (2014) Revisiting study on Boussinesq modeling of wave transformation over various reef profiles. Water Sci Eng 7:306–318

    Google Scholar 

  • Ferrario F, Beck MW, Storlazzi CD, Micheli F, Shepard CC, Airoldi L (2014) The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat Commun 5:3794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin GL (2015) Effects of roughness on wave-dominated coral reef environments. Ph.D. thesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, p 149

  • Franklin GL, Mariño-Tapia I, Torres-Freyermuth A (2013) Effects of reef roughness on wave setup and surf zone currents. J Coast Res 2005–2010

  • Geister J (1977) The influence of wave exposure on the ecological zonation of Caribbean coral reefs. 1:23–29

    Google Scholar 

  • Hench J, Leichter J, Monismith S (2008) Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol Oceanogr 53:2681–2694

    Article  Google Scholar 

  • Hench JL, Rosman JH (2013) Observations of spatial flow patterns at the coral colony scale on a shallow reef flat. J Geophys Res Ocean 118:1142–1156

    Article  Google Scholar 

  • Hinze JO (1975) Turbulence. McGraw-Hill, New York

    Google Scholar 

  • Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate Change, coral bleaching and the future of the world’s coral reefs. Symbiosis 48

  • Huang S, Li QS (2010) A new dynamic one-equation subgrid-scale model for large eddy simulations. Int J Numer Methods Eng 81:835–865

    Google Scholar 

  • Huang Z-C, Lenain L, Melville WK, Middleton JH, Reineman B, Statom N, McCabe RM (2012) Dissipation of wave energy and turbulence in a shallow coral reef lagoon. J Geophys Res Ocean 117:1–18

    Article  Google Scholar 

  • Jacobsen NG, Fredsoe J, Jensen JH (2014) Formation and development of a breaker bar under regular waves. Part 1: Model description and hydrodynamics. Coast Eng 88:182–193

    Article  Google Scholar 

  • Jacobsen NG, Fuhrman DR, Fredsøe J (2012) A wave generation toolbox for the open-source CFD library: OpenFoam®. Int J Numer Methods Fluids 70:1073–1088

    Article  Google Scholar 

  • López-Victoria M, Zea S (2004) Storm-mediated coral colonization by an excavating Caribbean sponge. Clim Res 26:251–256

    Article  Google Scholar 

  • Lowe RJ, Falter JL, Bandet MD, Pawlak G, Atkinson MJ, Monismith SG, Koseff JR (2005a) Spectral wave dissipation over a barrier reef. J Geophys Res 110:1–16

    Google Scholar 

  • Lowe RJ, Falter JL, Koseff JR, Monismith SG, Atkinson MJ (2007) Spectral wave flow attenuation within submerged canopies: Implications for wave energy dissipation. J Geophys Res 112:1–14

    Article  Google Scholar 

  • Lowe RJ, Koseff JR, Monismith SG (2005b) Oscillatory flow through submerged canopies: 1. Velocity structure. J Geophys Res 110:C10016

    Article  Google Scholar 

  • Lugo-Fernández A, Roberts HH, Suhayda JN (1998) Wave transformations across a Caribbean fringing-barrier Coral Reef. Cont Shelf Res 18:1099–1124

    Article  Google Scholar 

  • McDonald CB, Koseff JR, Monismith SG (2006) Effects of the depth to coral height ratio on drag coefficients for unidirectional flow over coral. Limnol Oceanogr 51:1294–1301

    Article  Google Scholar 

  • Molares RJ (2004) Clasificación e identificación de las componentes de marea del Caribe colombiano. Boletín Científico CIOH 105–114

  • Monismith SG (2007) Hydrodynamics of Coral Reefs. Annu Rev Fluid Mech 39:37–55

    Article  Google Scholar 

  • Monismith SG, Rogers JS, Koweek D, Dunbar RB (2015) Frictional wave dissipation on a remarkably rough reef. Geophys Res Lett 42:4063–4071

    Article  Google Scholar 

  • Narayan S, Beck MW, Reguero BG, Losada IJ, Van Wesenbeeck B, Pontee N, Sanchirico JN, Ingram JC, Lange GM, Burks-Copes KA (2016) The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS One 11:1–17

    Google Scholar 

  • Nelson RC (1996) Hydraulic roughness of coral reef platforms. Appl Ocean Res 18:265–274

    Article  Google Scholar 

  • Nunes V, Pawlak G (2008) Observations of bed roughness of a coral reef. J Coast Res 24:39–50

    Article  Google Scholar 

  • OpenFOAM (2018) OpenFOAM v3 User Guide. CFD Direct-The architects of OpenFOAM. https://cfd.direct/openfoam/user-guide-v3/ (Retrieved: 10.03.2018)

  • Osorio-Cano JD, Osorio AF, Peláez-Zapata DS (2017) Ecosystem management tools to study natural habitats as wave damping structures and coastal protection mechanisms. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2017.07.015

    Article  Google Scholar 

  • Osorio AF, Montoya RD, Ortiz JC, Peláez D (2016) Construction of synthetic ocean wave series along the Colombian Caribbean Coast: A wave climate analysis. Appl Ocean Res 56:119–131

    Article  Google Scholar 

  • Pawlak G, Maccready P (2002) Oscillatory flow across an irregular boundary. J Geophys Res 107:1–17

    Article  Google Scholar 

  • Reidenbach MA, Monismith SG, Koseff JR, Yahel G, Genin A (2006) Boundary layer turbulence and flow structure over a fringing coral reef. Limnol Oceanogr 51:1956–1968

    Article  Google Scholar 

  • Restrepo JC, Otero L, Casas AC, Henao A, Gutiérrez J (2012) Shoreline changes between 1954 and 2007 in the marine protected area of the Rosario Island Archipelago (Caribbean of Colombia). Ocean Coast Manag 69:133–142

    Article  Google Scholar 

  • Rogers JS, Monismith SG, Koweek DA, Dunbar RB (2016) Wave dynamics of a Pacific Atoll with high frictional effects. J Geophys Res Ocean 121:350–367

    Article  Google Scholar 

  • Rosman JH, Hench JL (2011) A framework for understanding drag parameterizations for coral reefs. J Geophys Res Ocean 116:1–15

    Article  Google Scholar 

  • Sánchez JA (1995) Benthic communities and geomorphology of the Tesoro Island coral reef, Colombian Caribbean. An Inst Invest Mar Punta Betín 24:55–77

    Google Scholar 

  • Sheppard C, Dixon DJ, Gourlay M, Sheppard A, Payet R (2005) Coral mortality increases wave energy reaching shores protected by reef flats: Examples from the Seychelles. Estuar Coast Shelf Sci 64:223–234

    Article  Google Scholar 

  • Sheremet A, Kaihatu JM, Su S, Smith ER, Smith JM (2011) Modeling of nonlinear wave propagation over fringing reefs. Coast Eng 58:1125–1137

    Article  Google Scholar 

  • Torres-Freyermuth A, Lara JL, Losada IJ (2010) Numerical modelling of short- and long-wave transformation on a barred beach. Coast Eng 57:317–330

    Article  Google Scholar 

  • Torres-Freyermuth A, Mariño-Tapia I, Coronado C, Salles P, Medellín G, Pedrozo-Acuña A, Silva R, Candela J, Iglesias-Prieto R (2012) Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon. Nat Hazards Earth Syst Sci 12:3765–3773

    Article  Google Scholar 

  • U.S. Army Corps of Engineers (2002) Coastal Engineering Manual (CEM), Engineer Manual 1110-2-1100. U.S Army Corps of Engineers, Washington, D.C.

    Google Scholar 

  • Wild C, Hoegh-guldberg O, Naumann MS, Colombo-pallotta MF, Ateweberhan M, Fitt WK, Iglesias-prieto R, Palmer C, Bythell JC, Ortiz J, Loya Y, Van Woesik R (2011) Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar Freshw Res 62:205–215

    Article  CAS  Google Scholar 

  • Young IR (1989) Wave transformation over coral reefs. J Geophys Res 94:9779–9789

    Article  Google Scholar 

  • Yu X, Rosman JH, Hench JL (2018) Interaction of Waves with Idealized High-Relief Bottom Roughness. J Geophys Res Ocean 123:3038–3059

    Article  Google Scholar 

  • Zhang Z, Lowe R, Falter J, Ivey G (2011) A numerical model of wave- and current-driven nutrient uptake by coral reef communities. Ecol Modell 222:1456–1470

    Article  CAS  Google Scholar 

  • Zhou Z, Hsu TJ, Cox D, Liu X (2017) Large-eddy simulation of wave-breaking induced turbulent coherent structures and suspended sediment transport on a barred beach. J Geophys Res Ocean 122:207–235

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of the PhD thesis of J. D. Osorio-Cano and supported by COLCIENCIAS within the framework of the research project “Study of wave energy dissipation in natural structures and their response to extreme events”—Internal Code: 111866044690. In memoriam Dr. Julio Espinoza-Avalos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan D. Osorio-Cano.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Dr. Mark R. Patterson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osorio-Cano, J.D., Alcérreca-Huerta, J.C., Osorio, A.F. et al. CFD modelling of wave damping over a fringing reef in the Colombian Caribbean. Coral Reefs 37, 1093–1108 (2018). https://doi.org/10.1007/s00338-018-1736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-018-1736-4

Keywords

Navigation