Skip to main content
Log in

LncRNAs at the heart of development and disease

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (LncRNAs) have emerged as a diverse class of functional molecules that contribute to nearly every facet of mammalian cardiac development and disease. Recent examples show that lncRNAs can be important co-regulators of cardiac patterning and morphogenesis and modulators of the pathogenic signaling that drives heart disease. The flexibility and chemical nature of RNA allows lncRNAs to utilize diverse mechanisms, mediating their effects through their sequence, structure, and molecular interactions with DNA, protein, and other RNAs. In vivo, i.e., animal, studies of individual lncRNAs highlight their ability to balance conserved cardiac gene expression networks, serve as specific and early biomarkers, and indicate their promise as useful therapeutic targets to treat human heart disease. Here, we review recent functionally characterized lncRNAs in cardiac biology and pathology and provide a perspective on emerging approaches to decipher the role of lncRNAs in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. https://doi.org/10.1126/science.aaf5573

    Article  PubMed  PubMed Central  Google Scholar 

  • Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akazawa H, Komuro I (2003) Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Alexanian M, Ounzain S (2020) Long noncoding RNAs in cardiac development. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a037374

    Article  PubMed  Google Scholar 

  • Alexanian M, Maric D, Jenkinson SP, Mina M, Friedman CE, Ting CC, Micheletti R, Plaisance I, Nemir M, Maison D, Kernen J, Pezzuto I, Villeneuve D, Burdet F, Ibberson M, Leib SL, Palpant NJ, Hernandez N, Ounzain S, Pedrazzini T (2017) A transcribed enhancer dictates mesendoderm specification in pluripotency. Nat Commun 8:1806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson DM, Arredondo J, Hahn K, Valente G, Martin JF, Wilson-Rawls J, Rawls A (2006) Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Dev Dyn 235:792–801

    Article  CAS  PubMed  Google Scholar 

  • Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R, Olson EN (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160:595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DM, Cannavino J, Li H, Anderson KM, Nelson BR, McAnally J, Bezprozvannaya S, Liu Y, Lin W, Liu N, Bassel-Duby R, Olson EN (2016a) Severe muscle wasting and denervation in mice lacking the RNA-binding protein ZFP106. Proc Natl Acad Sci USA 113:E4494-4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DM, Makarewich CA, Anderson KM, Shelton JM, Bezprozvannaya S, Bassel-Duby R, Olson EN (2016) Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. Sci Signal. https://doi.org/10.1126/scisignal.aaj1460

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson KM, Anderson DM, McAnally JR, Shelton JM, Bassel-Duby R, Olson EN (2016c) Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 539:433–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DM, Anderson KM, Nelson BR, McAnally JR, Bezprozvannaya S, Shelton JM, Bassel-Duby R, Olson EN (2021) A myocardin-adjacent lncRNA balances SRF-dependent gene transcription in the heart. Genes Dev 35:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson KM, Poosala P, Lindley SR, Anderson DM (2019) Targeted Cleavage and Polyadenylation of RNA by CRISPR-Cas13. bioRxiv 531111; https://doi.org/10.1101/531111

  • Aznaourova M, Schmerer N, Schmeck B, Schulte LN (2020) Disease-causing mutations and rearrangements in long non-coding RNA gene loci. Front Genet 11:527484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett M, Ulitsky I, Alloza I, Vandenbroeck K, Miscianinov V, Mahmoud AD, Ballantyne M, Rodor J, Baker AH (2021) Novel transcript discovery expands the repertoire of pathologically-associated, long non-coding RNAs in vascular smooth muscle cells. Int J Mol Sci. https://doi.org/10.3390/ijms22031484

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Zhang P, Wang S, Hong L, Yu S, Li B, Zeng H, Yang X, Shao L (2020) lncRNA FGD5 antisense RNA 1 upregulates RORA to suppress hypoxic injury of human cardiomyocyte cells by inhibiting oxidative stress and apoptosis via miR195. Mol Med Rep 22:4579–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castello A, Fischer B, Frese CK, Horos R, Alleaume AM, Foehr S, Curk T, Krijgsveld J, Hentze MW (2016) Comprehensive identification of RNA-binding domains in human cells. Mol Cell 63:696–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Deng S, Ge T, Ye M, Yu J, Lin S, Ma W, Songyang Z (2020a) Live cell imaging and proteomic profiling of endogenous NEAT1 lncRNA by CRISPR/Cas9-mediated knock-in. Protein Cell 11:641–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Liu J, Wang B, Li Y (2020b) Protective effect of lncRNA CRNDE on myocardial cell apoptosis in heart failure by regulating HMGB1 cytoplasm translocation through PARP-1. Arch Pharm Res 43:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wu Y, Qin X, Wen P, Liu J, Yang M (2021) Global gene expression analysis using RNA-seq reveals the new roles of Panax notoginseng Saponins in ischemic cardiomyocytes. J Ethnopharmacol 268:113639

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Jiang H (2019) Long non-coding RNA HAND2-AS1 downregulation predicts poor survival of patients with end-stage dilated cardiomyopathy. J Int Med Res 47:3690–3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu C, Quinn J, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). JoVE. https://doi.org/10.3791/3912

    Article  PubMed  PubMed Central  Google Scholar 

  • Correia M, Bernardes de Jesus B, Nobrega-Pereira S (2021) Novel insights linking lncRNAs and metabolism with implications for cardiac regeneration. Front Physiol 12:586927

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54:766–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Dong X, Gao F, Liu N, Liang T, Zhang F, Fu X, Pu L, Chen J (2021) Non-coding RNAs in cardiomyocyte proliferation and cardiac regeneration: Dissecting their therapeutic values. J Cell Mol Med 25:2315–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • East-Seletsky A, O’Connell MR, Burstein D, Knott GJ, Doudna JA (2017) RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Molecular cell 66:373-383 e373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Li H, Xie R, Zhang X, Nie X, Shi X, Zhan J, Yin Z, Zhao Y, Dai B, Yuan S, Wen Z, Chen C, Wang DW (2021) LncRNA ZNF593-AS alleviates contractile dysfunction in dilated cardiomyopathy. Circ Res. https://doi.org/10.1161/CIRCRESAHA.120.318437

    Article  PubMed  Google Scholar 

  • Fang Y, Xu Y, Wang R, Hu L, Guo D, Xue F, Guo W, Zhang D, Hu J, Li Y, Zhang W, Zhang M (2020) Recent advances on the roles of LncRNAs in cardiovascular disease. J Cell Mol Med 24:12246–12257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Liu Y, Guo S, Yao R, Wu L, Xiao L, Wang Z, Liu Y, Zhang Y (2017) Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell Physiol Biochem 44:1497–1508

    Article  CAS  PubMed  Google Scholar 

  • George MR, Duan Q, Nagle A, Kathiriya IS, Huang Y, Rao K, Haldar SM, Bruneau BG (2019) Minimal in vivo requirements for developmentally regulated cardiac long intergenic non-coding RNAs. Development. https://doi.org/10.1242/dev.185314

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3’ UTRs via Alu elements. Nature 470:284–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong C, Maquat LE (2015) Affinity purification of long noncoding RNA-protein complexes from formaldehyde cross-linked mammalian cells. Methods Mol Biol 1206:81–86

    Article  CAS  PubMed  Google Scholar 

  • Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A, Macura K, Blass G, Kellis M, Werber M, Herrmann BG (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha H, Song J, Wang S, Kapusta A, Feschotte C, Chen KC, Xing J (2014) A comprehensive analysis of piRNAs from adult human testis and their relationship with genes and mobile elements. BMC Genomics 15:545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien H, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HV, Quertermous T, Chang CP (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Luo S, Peng G, Lu JY, Cui G, Liu L, Yan P, Yin Y, Liu W, Wang R, Zhang J, Ai S, Chang Z, Na J, He A, Jing N, Shen X (2018) Mouse knockout models reveal largely dispensable but context-dependent functions of lncRNAs during development. J Mol Cell Biol 10:175–178

    Article  CAS  PubMed  Google Scholar 

  • He J, Ma X (2021) Interaction between LncRNA and UPF1 in tumors. Front Genet 12:624905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentze MW, Castello A, Schwarzl T, Preiss T (2018) A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol 19:327–341

    Article  CAS  PubMed  Google Scholar 

  • Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I (2015) Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep 11:1110–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori Y, Tanimoto Y, Takahashi S, Furukawa T, Koshiba-Takeuchi K, Takeuchi JK (2018) Important cardiac transcription factor genes are accompanied by bidirectional long non-coding RNAs. BMC Genomics 19:967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Ding Y, Yang L, Jiang X, Xia Z, You Z (2021) The effect of LncRNA SNHG16 on vascular smooth muscle cells in CHD by targeting miRNA-218-5p. Exp Mol Pathol 118:104595

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Ozaki K, Sato H, Mizuno H, Susumu S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Satoshi S, Nakamura Y, Tanaka T (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51:1087–1099

    Article  CAS  PubMed  Google Scholar 

  • Jusic A, Devaux Y, Action EU-CC (2020) Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol 115:23

    Article  CAS  PubMed  Google Scholar 

  • Kang X, Zhao Y, Van Arsdell G, Nelson SF, Touma M (2020) Ppp1r1b-lncRNA inhibits PRC2 at myogenic regulatory genes to promote cardiac and skeletal muscle development in mouse and human. RNA 26:481–491

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106:11667–11672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152:570–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173:665-676 e614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, Lemesle G, de Groote P, Pinet F, Thum T (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114:1569–1575

    Article  CAS  PubMed  Google Scholar 

  • Kurian L, Aguirre A, Sancho-Martinez I, Benner C, Hishida T, Nguyen TB, Reddy P, Nivet E, Krause MN, Nelles DA, Esteban CR, Campistol JM, Yeo GW, Belmonte JCI (2015) Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation 131:1278–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644

    Article  CAS  PubMed  Google Scholar 

  • La Greca A, Scarafia MA, Hernandez Canas MC, Perez N, Castaneda S, Colli C, Mobbs AM, Santin Velazque NL, Neiman G, Garate X, Aban C, Waisman A, Moro LN, Sevlever G, Luzzani C, Miriuka SG (2020) PIWI-interacting RNAs are differentially expressed during cardiac differentiation of human pluripotent stem cells. PloS one 15:e0232715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Latif S, Masino A, Garry DJ (2006) Transcriptional pathways direct cardiac development and regeneration. Trends Cardiovasc Med 16:234–240

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Gao C, Peng G, Greer C, Ren S, Wang Y, Xiao X (2011) Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circ Res 109:1332–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Hu Y, Li X, Jin G, Chen X, Chen G, Chen Y, Huang S, Liao W, Liao Y, Teng Z, Bin J (2018) Sirt1 antisense long noncoding RNA promotes cardiomyocyte proliferation by enhancing the stability of Sirt1. J Am Heart Assoc 7:e009700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18:510–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Zhu J, Jiang T, Zhong Y, Tie Y, Wu Y, Zheng X, Jin Y, Fu H (2015) Identification of lncRNA MEG3 binding protein using MS2-Tagged RNA affinity purification and mass spectrometry. Appl Biochem Biotechnol 176:1834–1845

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yang G, Huang Y, Zhang C, Jin H (2021) Predictive value of LncRNA on coronary restenosis after percutaneous coronary intervention in patients with coronary heart disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 100:e24114

    Article  CAS  Google Scholar 

  • Lucas BA, Lavi E, Shiue L, Cho H, Katzman S, Miyoshi K, Siomi MC, Carmel L, Ares M Jr, Maquat LE (2018) Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay. Proc Natl Acad Sci USA 115:968–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo B, He Z, Huang S, Wang J, Han D, Xue H, Liu P, Zeng X, Lu D (2020) Long non-coding RNA 554 promotes cardiac fibrosis via TGF-beta1 pathway in mice following myocardial infarction. Front Pharmacol 11:585680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo S, Zhang M, Wu H, Ding X, Li D, Dong X, Hu X, Su S, Shang W, Wu J, Xiao H, Yang W, Zhang Q, Zhang J, Lu Y, Pan Z (2021) SAIL: a new conserved anti-fibrotic lncRNA in the heart. Basic Res Cardiol 116:15

    Article  CAS  PubMed  Google Scholar 

  • Makarewich CA, Munir AZ, Schiattarella GG, Bezprozvannaya S, Raguimova ON, Cho EE, Vidal AH, Robia SL, Bassel-Duby R, Olson EN (2018) The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. Elife. https://doi.org/10.7554/eLife.38319

    Article  PubMed  PubMed Central  Google Scholar 

  • Matkovich SJ, Edwards JR, Grossenheider TC, de Guzman SC, Dorn GW 2nd (2014) Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci USA 111:12264–12269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mester-Tonczar J, Hasimbegovic E, Spannbauer A, Traxler D, Kastner N, Zlabinger K, Einzinger P, Pavo N, Goliasch G, Gyongyosi M (2020) Circular RNAs in cardiac regeneration: cardiac cell proliferation, differentiation, survival, and reprogramming. Front Physiol 11:580465

    Article  PubMed  PubMed Central  Google Scholar 

  • Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Grutzner F, Kaessmann H (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505:635–640

    Article  CAS  PubMed  Google Scholar 

  • Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu F, Reese AL, McAnally JR, Chen X, Kavalali ET, Cannon SC, Houser SR, Bassel-Duby R, Olson EN (2016) A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351:271–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu L, Lou F, Sun Y, Sun L, Cai X, Liu Z, Zhou H, Wang H, Wang Z, Bai J, Yin Q, Zhang J, Chen L, Peng D, Xu Z, Gao Y, Tang S, Fan L, Wang H (2020) A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci Adv. https://doi.org/10.1126/sciadv.aaz2059

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connell MR (2019) Molecular mechanisms of RNA targeting by cas13-containing Type VI CRISPR-cas systems. J Mol Biol 431:66–87

    Article  CAS  PubMed  Google Scholar 

  • Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito R, Suzuki H, Yamanaka I, Kiyosawa H, Yagi K, Tomaru Y, Hasegawa Y, Nogami A, Schonbach C, Gojobori T, Baldarelli R, Hill DP, Bult C, Hume DA, Quackenbush J, Schriml LM, Kanapin A, Matsuda H, Batalov S, Beisel KW, Blake JA, Bradt D, Brusic V, Chothia C, Corbani LE, Cousins S, Dalla E, Dragani TA, Fletcher CF, Forrest A, Frazer KS, Gaasterland T, Gariboldi M, Gissi C, Godzik A, Gough J, Grimmond S, Gustincich S, Hirokawa N, Jackson IJ, Jarvis ED, Kanai A, Kawaji H, Kawasawa Y, Kedzierski RM, King BL, Konagaya A, Kurochkin IV, Lee Y, Lenhard B, Lyons PA, Maglott DR, Maltais L, Marchionni L, McKenzie L, Miki H, Nagashima T, Numata K, Okido T, Pavan WJ, Pertea G, Pesole G, Petrovsky N, Pillai R, Pontius JU, Qi D, Ramachandran S, Ravasi T, Reed JC, Reed DJ, Reid J, Ring BZ, Ringwald M, Sandelin A, Schneider C, Semple CA, Setou M, Shimada K, Sultana R, Takenaka Y, Taylor MS, Teasdale RD, Tomita M, Verardo R, Wagner L, Wahlestedt C, Wang Y, Watanabe Y, Wells C, Wilming LG, Wynshaw-Boris A, Yanagisawa M, Yang I, Yang L, Yuan Z, Zavolan M, Zhu Y, Zimmer A, Carninci P, Hayatsu N, Hirozane-Kishikawa T, Konno H, Nakamura M, Sakazume N, Sato K, Shiraki T, Waki K, Kawai J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Imotani K, Ishii Y, Itoh M, Kagawa I, Miyazaki A, Sakai K, Sasaki D, Shibata K, Shinagawa A, Yasunishi A, Yoshino M, Waterston R, Lander ES, Rogers J, Birney E, Hayashizaki Y, Consortium F, I RGERGP, Team II (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573

    Article  PubMed  Google Scholar 

  • Ounzain S, Micheletti R, Arnan C, Plaisance I, Cecchi D, Schroen B, Reverter F, Alexanian M, Gonzales C, Ng SY, Bussotti G, Pezzuto I, Notredame C, Heymans S, Guigo R, Johnson R, Pedrazzini T (2015) CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J Mol Cell Cardiol 89:98–112

    Article  CAS  PubMed  Google Scholar 

  • Padula SL, Velayutham N, Yutzey KE (2021) Transcriptional regulation of postnatal cardiomyocyte maturation and regeneration. Int J Mol Sci. https://doi.org/10.3390/ijms22063288

    Article  PubMed  PubMed Central  Google Scholar 

  • Paradis AN, Gay MS, Zhang L (2014) Binucleation of cardiomyocytes: the transition from a proliferative to a terminally differentiated state. Drug Discov Today 19:602–609

    Article  CAS  PubMed  Google Scholar 

  • Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM (2017) Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 49:1346–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prummel KD, Nieuwenhuize S, Mosimann C (2020) The lateral plate mesoderm. Development. https://doi.org/10.1242/dev.175059

    Article  PubMed  PubMed Central  Google Scholar 

  • Quiat D, Olson EN (2013) MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Investig 123:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajan KS, Velmurugan G, Pandi G, Ramasamy S (2014) miRNA and piRNA mediated Akt pathway in heart: antisense expands to survive. Int J Biochem Cell Biol 55:153–156

    Article  CAS  PubMed  Google Scholar 

  • Ritter N, Ali T, Kopitchinski N, Schuster P, Beisaw A, Hendrix DA, Schulz MH, Muller-McNicoll M, Dimmeler S, Grote P (2019) The lncRNA locus handsdown regulates cardiac gene programs and is essential for early mouse development. Dev Cell 50:644-657 e648

    Article  CAS  PubMed  Google Scholar 

  • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos F, Correia M, Nobrega-Pereira S, Bernardes de Jesus B (2020) Age-Related Pathways in Cardiac Regeneration: A Role for lncRNAs? Front Physiol 11:583191

    Article  PubMed  Google Scholar 

  • Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, Swerdel MR, D’Ecclessis MF, Moore JC, Lai V, Gong G, Yancopoulos GD, Frendewey D, Kellis M, Hart RP, Valenzuela DM, Arlotta P, Rinn JL (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e01749

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrivastava A, Haase T, Zeller T, Schulte C (2020) Biomarkers for heart failure prognosis: proteins, genetic scores and non-coding RNAs. Front Cardiovasc Med 7:601364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Nguyen HC, Ehsan M, Michels DCR, Singh P, Qadura M, Singh KK (2021) Pravastatin-induced changes in expression of long non-coding and coding RNAs in endothelial cells. Physiol Rep 9:e14661

    Article  CAS  PubMed  Google Scholar 

  • Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469:336–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Kim YK (2020) Discovery and functional prediction of long non-coding RNAs common to ischemic stroke and myocardial infarction. J Lipid Atheroscler 9:449–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiroski AM, Sanders R, Meloni M, McCracken IR, Thomson A, Brittan M, Gray GA, Baker AH (2021) The influence of the LINC00961/SPAAR locus loss on murine development, myocardial dynamics, and cardiac response to myocardial infarction. Int J Mol Sci. https://doi.org/10.3390/ijms22020969

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulitsky I (2018) Interactions between short and long noncoding RNAs. FEBS Lett 592:2874–2883

    Article  CAS  PubMed  Google Scholar 

  • Vance KW (2017) Mapping long noncoding RNA chromatin occupancy using capture hybridization analysis of RNA targets (CHART). Methods Mol Biol 1468:39–50

    Article  CAS  PubMed  Google Scholar 

  • Vella S, Gallo A, Lo Nigro A, Galvagno D, Raffa GM, Pilato M, Conaldi PG (2016) PIWI-interacting RNA (piRNA) signatures in human cardiac progenitor cells. Int J Biochem Cell Biol 76:1–11

    Article  CAS  PubMed  Google Scholar 

  • Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:326ra322

    Article  CAS  Google Scholar 

  • Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, Ding H, Wylie JN, Pico AR, Capra JA, Erwin G, Kattman SJ, Keller GM, Srivastava D, Levine SS, Pollard KS, Holloway AK, Boyer LA, Bruneau BG (2012) Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151:206–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang J (2020) Exosomal lncRNA AK139128 derived from hypoxic cardiomyocytes promotes apoptosis and inhibits cell proliferation in cardiac fibroblasts. Int J Nanomedicine 15:3363–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Gong C, Maquat LE (2013) Control of myogenesis by rodent SINE-containing lncRNAs. Genes Dev 27:793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22:1131–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Washietl S, Kellis M, Garber M (2014) Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res 24:616–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Sanger Institute Mouse Genetics P, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (2013) Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154:452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Zhang X, Yu K, Zhang G, Shi Y, Jiang Y (2020) Analysis on the expression and prognostic value of LncRNA FAF in patients with coronary heart disease. Biomed Res Int 2020:9471329

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye M, Zhang J, Wei M, Liu B, Dong K (2020) Emerging role of long noncoding RNA-encoded micropeptides in cancer. Cancer Cell Int 20:506

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Lupski JR (2015) Non-coding genetic variants in human disease. Hum Mol Genet 24:R102-110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Du W, Yang B (2019) Long non-coding RNAs as new regulators of cardiac electrophysiology and arrhythmias: Molecular mechanisms, therapeutic implications and challenges. Pharmacol Ther 203:107389

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Fu X, Kataoka M, Liu N, Wang Y, Gao F, Liang T, Dong X, Pei J, Hu X, Zhu W, Yu H, Cowan DB, Hu X, Huang ZP, Wang J, Wang DZ, Chen J (2021a) Long noncoding RNA Cfast regulates cardiac fibrosis. Mol Ther Nucleic Acids 23:377–392

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang X, Cai B, Li Y, Jiang Y, Fu X, Zhao Y, Gao H, Yang Y, Yang J, Li S, Wu H, Jin X, Xue G, Yang J, Ma W, Han Q, Tian T, Li Y, Yang B, Lu Y, Pan Z (2021b) The long noncoding RNA lncCIRBIL disrupts the nuclear translocation of Bclaf1 alleviating cardiac ischemia-reperfusion injury. Nat Commun 12:522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3’ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63:405–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Li G, Li J (2020) Non-coding RNAs and cardiac aging. Adv Exp Med Biol 1229:247–258

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Wang Y, Zhang L, Zhang J, Liu N, Wang H (2021) Mechanism of long noncoding RNA metastasisassociated lung adenocarcinoma transcript 1 in lipid metabolism and inflammation in heart failure. Int J Mol Med. https://doi.org/10.3892/ijmm.2020.4838

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Liu G, Zhang H, Ruan P, Ge J, Liu Q (2021b) BIRC5, GAJ5, and lncRNA NPHP3-AS1 are correlated with the development of atrial fibrillation-valvular heart disease. Int Heart J 62:153–161

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Li N, Sun L, Zheng D, Shao G (2021) Non-coding RNAs: The key detectors and regulators in cardiovascular disease. Genomics 113:1233–1246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the National Institutes of Health (1R01HL151583-01 to D.M.A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas M. Anderson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, K.M., Anderson, D.M. LncRNAs at the heart of development and disease. Mamm Genome 33, 354–365 (2022). https://doi.org/10.1007/s00335-021-09937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-021-09937-6

Navigation