Skip to main content

Advertisement

Log in

Millennial multi-proxy reconstruction of oasis dynamics in Jordan, by the Dead Sea

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Vegetation reconstructions in the Dead Sea region based on sediment records are potentially biased, because the vast majority of them derive from the western side of the sea, and only focus on large areas and time spans, while little is known about extra-local (< 1,000 m radius) to local (< 20 m radius) changes. To fill this gap, we compared a vegetation survey with modern pollen assemblages from the “Palm Terrace” oasis ca. 300 m b.s.l. (below sea level), at the eastern edge of the Dead Sea. This revealed how the oasis vegetation is reflected in pollen assemblages. In addition, two sediment cores were collected from the centre and the edge of a mire at the oasis to reconstruct past vegetation dynamics. We analysed sedimentary pollen and microscopic charcoal, as well as the sediment chemistry by X-ray fluorescence (XRF) and conductivity, focusing on the past ~ 1,000 years. Pollen results suggest that mesophilous Phoenix dactylifera (date palm) stands and wetland vegetation expanded there around ad 1300–1500 and 1700–1900. During the past ca. 100 years, drought-adapted Chenopodiaceae gained ground, partly replacing the palms. Results from elemental analysis, especially of elements such as chlorine, provide evidence of enhanced evaporative salinization. Increasing desertification and the associated decline of mesophilous date palm stands during the past ca. 50 years is probably related to a decrease in annual precipitation and also corresponds to decreasing water levels in the Dead Sea. These have mainly been caused by increasing extraction of fresh water from tributaries and wells, mainly for local agriculture and industry. In the future, with hotter and drier conditions as well as increased use of water, oasis vegetation along the Dead Sea might be at further risk of contraction or even extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abu Ghazleh S, Abed AM, Kempe S (2011) The dramatic drop of the Dead Sea: background, rates, impacts and solutions. In: Badescu V, Cathcart RB (eds) Macro-engineering seawater in unique environments. Springer, Berlin, pp 77–105

    Google Scholar 

  • Abu Ghazleh S, Hartmann J, Jansen N, Kempe S (2009) Water input requirements of the rapidly shrinking Dead Sea. Naturwissenschaften 96:637–643. https://doi.org/10.1007/s00114-009-0514-0

    Google Scholar 

  • Albert R, Petutschnig B, Watzka M (2004) Zur Vegetation und Flora Jordaniens. In: Enzel Y, Agnon A, Stein M (eds) New frontiers in Dead Sea paleoenvironmental research. Geological Society of America, Boulder, pp 215–229

    Google Scholar 

  • Alhammadi MS, Kurup SS (2012) Impact of salinity stress on date palm (Phoenix dactylifera L.)—a review. In: Sharma P, Abrol V (eds) Crop production technologies. InTech, Winchester, pp 169–178. https://doi.org/10.5772/29527

    Google Scholar 

  • Al-Oudat M, Qadir M (2011) The halophytic flora of Syria. International Center for Agricultural Research in Dry Areas, Aleppo

    Google Scholar 

  • Anderson RS, Homola RL, Davis RB, Jacobson GL Jr (1984) Fossil remains of the mycorrhizal fungal Glomus fasciculatum complex in postglacial lake sediments from Maine. Can J Bot 62(2):325–322,328. https://doi.org/10.1139/b84-316

    Google Scholar 

  • Barham N (1994) Entwicklung und Probleme der Landwirtschaft Jordaniens. Zeitschrift für Wirtschaftsgeographie 38:23–35

    Google Scholar 

  • Bar-Matthews M, Ayalon A, Gilmour M, Matthews A, Hawkesworth CJ (2003) Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim Cosmochim Acta 67:3,181–3,199. https://doi.org/10.1016/S0016-7037(02)01031-1

    Google Scholar 

  • Bartov Y, Enzel Y, Porat N, Stein M (2007) Evolution of the Late Pleistocene Holocene Dead Sea basin from sequence stratigraphy of fan deltas and lake-level reconstruction. J Sediment Res 77:680–692. https://doi.org/10.2110/jsr.2007.070

    Google Scholar 

  • Baruch U (1986) The Late Holocene vegetational history of Lake Kinneret (Sea of Galilee). Israel Paléorient 12:37–48. https://doi.org/10.3406/paleo.1986.4407

    Google Scholar 

  • Baruch U (1993) The palynology of Late Quaternary sediments of the Dead Sea. The Hebrew University of Jerusalem, Hebrew (in Hebrew with English abstract)

    Google Scholar 

  • Beffa G, Pedrotta T, Colombaroli D et al (2016) Vegetation and fire history of coastal north-eastern Sardinia (Italy) under changing Holocene climates and land use. Veget Hist Archaeobot 25:271–289. https://doi.org/10.1007/s00334-015-0548-5

    Google Scholar 

  • Beit-Arieh I (1997) The Dead Sea region: an archaeological perspective. In: Niemi TM, Ben-Avraham Z, Gat J (eds) The Dead Sea: the lake and its settings. Oxford University Press, New York, pp 249–251

    Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170. https://doi.org/10.1111/j.1469-8137.1996.tb04521.x

    Google Scholar 

  • Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, 2nd edn. Pfeil, München

    Google Scholar 

  • Birks HJB, Gordon A (1985) Numerical methods in Quaternary pollen analysis. Academic, London

    Google Scholar 

  • Birks HJB, Heegaard E (2003) Developments in age-depth modelling of Holocene stratigraphical sequences. PAGES News 11:7–8

    Google Scholar 

  • Blaauw M (2010) Methods and code for “classical” age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518. https://doi.org/10.1016/j.quageo.2010.01.002

    Google Scholar 

  • Black E, Brayshaw D, Slingo J, Hoskins B (2011) Future climate of the Middle East. In: Mithen S, Black E (eds) Water, life and civilisation: climate, environment and society in the Jordan Valley. Cambridge University Press, Cambridge, pp 51–62

    Google Scholar 

  • Bookman R, Enzel Y, Agnon A, Stein M (2004) Late Holocene lake levels of the Dead Sea. Bull Geol Soc Am 116:555–571

    Google Scholar 

  • Borchardt D, Bogardi JJ, Ibisch RB (eds) (2016) Integrated water resources management: concept, research and implementation. Springer, Cham

    Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie: Grundzüge der Vegetationskunde, 3rd edn. Springer, Wien

    Google Scholar 

  • Broshi M, Finkelstein I (1992) The population of Palestine in Iron Age II. Bull Amer Schools Orient Res 287:47–60. https://doi.org/10.2307/1357138

    Google Scholar 

  • Chao CT, Krueger RR (2007) The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. HortScience 42:1,077–1,082

    Google Scholar 

  • Chen A, Weisbrod N (2016) Assessment of anthropogenic impact on the environmental flows of semi-arid watersheds: the case study of the lower Jordan River. In: Borchardt D, Bogardi JJ, Ibisch RB (eds) Integrated water resources management: concept, research and implementation. Springer, Cham, pp 59–83

    Google Scholar 

  • Christensen JH, Krishna Kumar K, Aldrian E et al (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp 1. Cambridge University Press, Cambridge,pp 217–1,308

    Google Scholar 

  • Clamer C (2010) Paradies am Meeresrand: Die Palastanlage von Ain ez-Zara/Kallirrhoë. In: Zangenberg J (ed) Das Tote Meer: Kultur und Geschichte am tiefsten Punkt der Erde. Zabern, Mainz, pp 113–124

    Google Scholar 

  • Clamer C, Dussart O (1997) Fouilles archéologiques de Aïn Ez-Zâra/Callirrhoé: villégiature hérodienne. Institut français d’archéologie du Proche-Orient, Beyrouth

    Google Scholar 

  • Croudace IW, Rothwell RG (eds) (2015) Micro-XRF studies of sediment cores. Springer, Dordrecht

    Google Scholar 

  • Danin A (1983) Desert vegetation of Israel and Sinai. Cana Publishing House, Jerusalem

    Google Scholar 

  • Danin A, Orshan G (eds) (1999) Vegetation of Israel, vol 1: desert and coastal vegetation. Backhuys, Leiden

    Google Scholar 

  • Davies CP, Fall PL (2001) Modern pollen precipitation from an elevational transect in central Jordan and its relationship to vegetation. J Biogeogr 28:1,195–1,210. https://doi.org/10.1046/j.1365-2699.2001.00630.x

    Google Scholar 

  • Dayan U, Morin E (2006) Flash flood-producing rainstorms over the Dead Sea: a review. In: Enzel Y, Agnon A, Stein M (eds) New frontiers in Dead Sea paleoenvironmental research. Geological Society of America, Boulder, pp 53–62

    Google Scholar 

  • Decker JP (1961) Salt secretion by Tamarix pentandra Pall. For Sci 7:214–217

    Google Scholar 

  • Dols MW (1977) The “black death” in the Middle East. Princeton University Press, Princeton

    Google Scholar 

  • Enzel Y, Bookman R, Sharon D et al (2003) Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat Res 60:263–273. https://doi.org/10.1016/j.yqres.2003.07.011

    Google Scholar 

  • Finsinger W, Tinner W (2005) Minimum count sums for charcoal concentration estimates in pollen slides: accuracy and potential errors. Holocene 15:293–297. https://doi.org/10.1191/0959683605hl808rr

    Google Scholar 

  • Flexer A, Yellin-Dror A (2009) State of the art. In: Hötzl H, Möller P, Rosenthal E (eds) The water of the Jordan Valley. Springer, Berlin, pp 15–54

    Google Scholar 

  • Freiwan M, Kadioğlu M (2007) Climate variability in Jordan. Int J Climatol 28:69–89. https://doi.org/10.1002/joc.1512

    Google Scholar 

  • Garfunkel Z, Ben-Avraham Z (1996) The structure of the Dead Sea basin. Tectonophysics 266:155–176. https://doi.org/10.1016/S0040-1951(96)00188-6

    Google Scholar 

  • Ghatasheh NA, Mua’ad M, Faris H (2013) Dead Sea water level and surface area monitoring using spatial data extraction from remote sensing images. Int Rev Comput Softw 8(2):892–892,897

    Google Scholar 

  • Hect A, Gertman I (2003) Dead Sea meteorological climate. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea. Gantner, Haifa, pp 69–116

    Google Scholar 

  • Heim C, Nowaczyk NR, Negendank JF et al (1997) Near East desertification: evidence from the Dead Sea. Naturwissenschaften 84:398–401

    Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Google Scholar 

  • Hillenbrand C (2000) The Crusades: Islamic perspectives. Routledge, New York

    Google Scholar 

  • Hirschfeld Y (2006) The archaeology of the Dead Sea valley in the Late Hellenistic and Early Roman periods. In: Enzel Y, Agnon A, Stein M (eds) New frontiers in Dead Sea paleoenvironmental research. Geological Society of America, Boulder, pp 215–229

    Google Scholar 

  • Horowitz A (1979) The quaternary of Israel. Academic, London

    Google Scholar 

  • Horowitz A (1992) Palynology of arid lands. Elsevier, Amsterdam

    Google Scholar 

  • Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55:2,059–2,072

    Google Scholar 

  • Hütteroth W-D, Abdulfattah K (1977) Historical geography of Palestine, Transjordan and Southern Syria in the late 16th century. Selbstverlag der Fränkischen Geographischen Gesellschaft in Kommission bei Palm und Enke, Erlangen

    Google Scholar 

  • Jacobson GL, Bradshaw RHW (1981) The selection of sites for paleovegetational studies. Quat Res 16:80–96. https://doi.org/10.1016/0033-5894(81)90129-0

    Google Scholar 

  • Jain SM, Al-Khayri JM, Johnson DV (eds) (2011) Date palm biotechnology. Springer, Dordrecht

    Google Scholar 

  • Juggins S (1991) Zone V. 1.2. Freeware. DOS Program for the zonation (constrained clustering) of palaeoecological data. In: Steve Juggins web pages at Newcastle University. https://www.staff.ncl.ac.uk/stephen.juggins/software.htm. Accessed 5 Oct 2016

  • Kafle HK, Bruins HJ (2009) Climatic trends in Israel 1970–2002: warmer and increasing aridity inland. Clim Chang 96:63–77. https://doi.org/10.1007/s10584-009-9578-2

    Google Scholar 

  • Klein C, Flohn H (1987) Contributions to the knowledge of the fluctuations of the Dead Sea level. Theor Appl Climatol 38:151–156. https://doi.org/10.1007/BF00868099

    Google Scholar 

  • Kołaczek P, Zubek S, Błaszkowski J et al (2013) Erosion or plant succession—how to interpret the presence of arbuscular mycorrhizal fungi (Glomeromycota) spores in pollen profiles collected from mires. Rev Palaeobot Palynol 189:29–37. https://doi.org/10.1016/j.revpalbo.2012.11.006

    Google Scholar 

  • Lang G (1994) Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Spektrum Akademischer Verlag, Jena

    Google Scholar 

  • Langgut D, Finkelstein I, Litt T et al (2015) Vegetation and climate changes during the Bronze and Iron Ages (~ 3600–600 BCE) in the southern Levant based on palynological records. Radiocarbon 57:217–235. https://doi.org/10.2458/azu_rc.57.18555

    Google Scholar 

  • Langgut D, Neumann FH, Stein M et al (2014) Dead Sea pollen record and history of human activity in the Judean Highlands (Israel) from the Intermediate Bronze into the Iron Ages (ca 2500–500 BCE). Palynology 38:280–302. https://doi.org/10.1080/01916122.2014.906001

    Google Scholar 

  • Legendre P, Birks HJB (2012) From classical to canonical ordination. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Springer, Dordrecht, pp 201–248

    Google Scholar 

  • Lelieveld J, Proestos Y, Hadjinicolaou P et al (2016) Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim Chang 137:245–260. https://doi.org/10.1007/s10584-016-1665-6

    Google Scholar 

  • Lensky NG, Dvorkin Y, Lyakhovsky V et al (2005) Water, salt, and energy balances of the Dead Sea. Water Resour Res 41:W12418. https://doi.org/10.1029/2005WR004084

    Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Leroy SAG (2010) Pollen analysis of core DS7-1SC (Dead Sea) showing intertwined effects of climatic change and human activities in the Late Holocene. J Archaeol Sci 37:306–316. https://doi.org/10.1016/j.jas.2009.09.042

    Google Scholar 

  • Leroy SAG, Marco S, Bookman R, Miller CS (2010) Impact of earthquakes on agriculture during the Roman-Byzantine period from pollen records of the Dead Sea laminated sediment. Quat Res 73:191–200. https://doi.org/10.1016/j.yqres.2009.10.003

    Google Scholar 

  • Litt T, Ohlwein C, Neumann FH et al (2012) Holocene climate variability in the Levant from the Dead Sea pollen record. Quat Sci Rev 49:95–105. https://doi.org/10.1016/j.quascirev.2012.06.012

    Google Scholar 

  • López-Merino L, Leroy SA, Eshel A, Epshtein V, Belmaker R, Bookman R (2016) Using palynology to re-assess the Dead Sea laminated sediments—indeed varves? Quat Sci Rev 140:49–66

    Google Scholar 

  • Migowski C, Stein M, Prasad S et al (2006) Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quat Res 66:421–431. https://doi.org/10.1016/j.yqres.2006.06.010

    Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell, London

    Google Scholar 

  • Mozingo HN (1987) Shrubs of the Great Basin: a natural history. University of Nevada Press, Reno

    Google Scholar 

  • Neumann FH, Kagan EJ, Leroy SAG, Baruch U (2010) Vegetation history and climate fluctuations on a transect along the Dead Sea west shore and their impact on past societies over the last 3500 years. J Arid Environ 74:756–764. https://doi.org/10.1016/j.jaridenv.2009.04.015

    Google Scholar 

  • Neumann FH, Kagan EJ, Schwab MJ, Stein M (2007) Palynology, sedimentology and palaeoecology of the late Holocene Dead Sea. Quat Sci Rev 26:1,476–1,498. https://doi.org/10.1016/j.quascirev.2007.03.004

    Google Scholar 

  • Neumann FH, Kagan EJ, Stein M, Agnon A (2009) Assessment of the effect of earthquake activity on regional vegetation. High-resolution pollen study of the Ein Feshka section, Holocene Dead Sea. Rev Palaeobot Palynol 155:42–51. https://doi.org/10.1016/j.revpalbo.2008.12.016

    Google Scholar 

  • Odhiambo GO (2017) Water scarcity in the Arabian Peninsula and socio-economic implications. Appl Water Sci 7:2,479–472,492. https://doi.org/10.1007/s13201-016-0440-1

    Google Scholar 

  • Phillips AJL, Alves A, Abdollahzadeh J et al (2013) The Botryosphaeriaceae: genera and species known from culture. Stud Mycol 76:51–167. https://doi.org/10.3114/sim0021

    Google Scholar 

  • Rambeau CMC (2010) Palaeoenvironmental reconstruction in the Southern Levant: synthesis, challenges, recent developments and perspectives. Philos Trans R Soc A Math Phys Eng Sci 368(5):225–225,248. https://doi.org/10.1098/rsta.2010.0190

    Google Scholar 

  • Rambeau CMC, Black S (2011) Palaeoenvironments of the southern Levant 5,000 bp to present: linking the geological and archaeological records. In: Mithen S, Black E (eds) Water, life and civilisation: climate, environment and society in the Jordan valley. Cambridge University Press, Cambridge, pp 94–104

    Google Scholar 

  • Rambeau CMC, Gobet E, Grand-Clément E et al. (2015) New methods for the palaeoenvironmental investigation of arid wetlands, Dead Sea edge, Jordan. In: Lucke B, Bäumler R, Schmidt M (eds) Soils and sediments as archives of landscape change. (Erlanger Geographische Arbeiten 42). Fränkische geographische Gesellschaft, Erlangen, pp 147–162

    Google Scholar 

  • Ramoliya PJ, Pandey AN (2003) Soil salinity and water status affect growth of Phoenix dactylifera seedlings. N Z J Crop Hortic Sci 31:345–353. https://doi.org/10.1080/01140671.2003.9514270

    Google Scholar 

  • Reille M (1992) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille

    Google Scholar 

  • Reille M (1995) Pollen et spores d’Europe et d’Afrique du Nord. Suppl 1. Laboratoire de Botanique Historique et Palynologie, Marseille

    Google Scholar 

  • Reille M (1998) Pollen et spores d’Europe et d’Afrique du Nord. Suppl 2. Laboratoire de Botanique Historique et Palynologie, Marseille

    Google Scholar 

  • Reimer P et al (2013) IntCal13 and Marine13 Radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55:1,869–1,887. https://doi.org/10.2458/azu_js_rc.55.16947

    Google Scholar 

  • Rimawi O, Salameh E (1988) Hydrochemistry and groundwater system of the Zerka Ma’in-Zara thermal field, Jordan. J Hydrol 98:147–163

    Google Scholar 

  • Robinson SA, Black S, Sellwood BW, Valdes PJ (2006) A review of palaeoclimates and palaeoenvironments in the Levant and Eastern Mediterranean from 25,000 to 5000 years bp: setting the environmental background for the evolution of human civilisation. Quat Sci Rev 25:1,517–1,541. https://doi.org/10.1016/j.quascirev.2006.02.006

    Google Scholar 

  • Salameh E, El-Naser H (2000) Changes in the Dead Sea level and their impacts on the surrounding groundwater. Acta Hydrochim Hydrobiol 28:24–33. https://doi.org/10.1002/(SICI)1521-401X(200001)28:1<24::AID-AHEH24>3.0.CO;2-6

    Google Scholar 

  • Salameh E, El-Naser H (2009) Retreat of the Dead Sea and its effect on the surrounding groundwater resources and the stability of its coastal deposits. In: Hötzl H, Möller P, Rosenthal E (eds) The water of the Jordan valley: scarcity and deterioration of groundwater and its impact on the regional development. Springer, Berlin, pp 247–264

    Google Scholar 

  • Salameh E, Udluft P (1985) The hydrodynamic pattern of the central part of Jordan. Geol Jahrb 38:39–53

    Google Scholar 

  • Sawarieh A, Hötzl H, Salameh E (2004) Hydrogeology of thermal waters from Zara-Zarqa Ma’in and Jiza areas, Jordan. In: Chatzipetros AA, Pavlides SB (eds) Proceedings of the 5th International Symposium on Eastern Mediterranean Geology, Thessaloniki, Greece, 14–20 April 2004, pp 1,564–1,567

  • Sawarieh A, Hötzl H, Salameh E (2009) Hydrogeology and hydrochemistry of Wadi Waleh and Wadi Zarqa Ma’in catchment, central Jordan. In: Hötzl H, Möller P, Rosenthal E (eds) The water of the Jordan valley: scarcity and deterioration of groundwater and its impact on the regional development. Springer, Berlin, pp 361–370

    Google Scholar 

  • Schiebel V (2013) Vegetation and climate history of the southern Levant during the last 30,000 years based on palynological investigation. Universitäts- und Landesbibliothek, Bonn

    Google Scholar 

  • Seetzen UJ (1854) Reisen durch Syrien, Palästina, Phönicien, die Transjordan-Länder, Arabia Petraca und Unter-Aegypten. Reimer, Berlin

    Google Scholar 

  • Shaer H, Squires V (2015) Halophytic and salt-tolerant feedstuffs: impacts on nutrition, physiology and reproduction of livestock. CRC, Boca Raton

    Google Scholar 

  • Siebert C, Rödiger T, Geyer S et al (2016) Multidisciplinary investigations of the transboundary Dead Sea basin and its water resources. In: Borchardt D, Bogardi JJ, Ibisch RB (eds) Integrated water resources management: concept, research and implementation. Springer, Cham, pp 107–127

    Google Scholar 

  • Smadi MM (2006) Observed abrupt changes in minimum and maximum temperatures in Jordan in the 20th century. Am J Environ Sci 2:114–120

    Google Scholar 

  • Stockmarr JE (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Strobel A (1977) Auf der Suche nach Machärus und Kallirrhoe: Selbstzeugnisse und Dokumente zu einem geographischen Problem des 19. Jahrhunderts. Zeitschrift des Deutschen Palästina-Vereins 93:247–267

    Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion; reporting of C-14 data. Radiocarbon 19:355–363

    Google Scholar 

  • Szidat S, Salazar GA, Vogel E et al (2014) 14C Analysis and sample preparation at the new Bern laboratory for the analysis of radiocarbon with AMS (LARA). Radiocarbon 56:561–566. https://doi.org/10.2458/56.17457

    Google Scholar 

  • Tiner RW (1999) Wetland indicators: a guide to wetland identification, delineation, classification, and mapping. CRC, Boca Raton

    Google Scholar 

  • Tinner W, Hu FS (2003) Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13:499–505. https://doi.org/10.1191/0959683603hl615rp

    Google Scholar 

  • UN data (2016) World statistics pocketbook: Jordan. United Nations statistics division. http://data.un.org/CountryProfile.aspx?crName=JORDAN. Accessed at 30 Mar 2017

  • Van Geel B (1986) Application of fungal and algal remains and other microfossils in palynological analyses. In: Berglund BE (ed) Handbook of Holocene palaeoecoloy and palaeohydrology. Wiley, Chichester, pp 497–505

    Google Scholar 

  • Vepraskas MJ, Craft CB (2016) Wetland soils: genesis, hydrology, landscapes, and classification, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Waitzbauer W (2004) Reise durch die Natur Jordaniens. Biologiezentrum, Oberösterreichische Landesmuseen, Linz

    Google Scholar 

  • Weinberger G, Livshitz Y, Givati A et al (2012) The natural water resources between the Mediterranean Sea and the Jordan River. Hydrological Service of Israel, Jerusalem

    Google Scholar 

  • Yechieli Y, Abelson M, Baer G (2016) Sinkhole formation and subsidence along the Dead Sea coast, Israel. Hydrogeol J 24:601–612. https://doi.org/10.1007/s10040-015-1338-y

    Google Scholar 

  • Zohary M (1962) Plant life of Palestine: Israel and Jordan. Ronald, New York

    Google Scholar 

  • Zohary M, Feinbrun-Dothan N (1966) Flora Palaestina. Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

Download references

Acknowledgements

We gratefully thank the Jordan Royal Society for the Conservation of Nature for the permission to do fieldwork in the Mujib Biosphere Reserve. Furthermore, we are grateful to Steffen Wolters for his help with the fieldwork, Sönke Szidat for radiocarbon dating and Jean-Nicolas Haas and Walter Gams for their help with identification of the fungal spores. We would also like to thank two anonymous reviewers and the handling editor for constructive comments that greatly improved this manuscript. Funding was provided by the Swiss National Science Foundation (Grant-Nr. 136731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schwörer.

Additional information

Communicated by T. Litt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1130 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggenberger, S., Gobet, E., van Leeuwen, J.F.N. et al. Millennial multi-proxy reconstruction of oasis dynamics in Jordan, by the Dead Sea. Veget Hist Archaeobot 27, 649–664 (2018). https://doi.org/10.1007/s00334-017-0663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-017-0663-6

Keywords

Navigation