Skip to main content
Log in

On a Chemotactic Host–Pathogen Model: Boundedness, Aggregation, and Segregation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This study formulates a host–pathogen model driven by cross-diffusion to examine the effect of chemotaxis on solution dynamics and spatial structures. The negative binomial incidence mechanism is incorporated to illustrate the transmission process by pathogens. In terms of the magnitude of chemotaxis, the global solvability of the model is extensively studied by employing semigroup methods, loop arguments, and energy estimates. In a limiting case, the necessary conditions for chemotaxis-driven instability are established regarding the degree of chemotactic attraction. Spatial aggregation may occur along strong chemotaxis in a two-dimensional domain due to solution explosion. We further observe that spatial segregation appears for short-lived free pathogens in a one-dimensional domain, whereas strong chemotactic repulsion homogenizes the infected hosts and thus fails to segregate host groups effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing was not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Anderson, R.M., May, R.M.: Regulation and stability of host-parasite population interactions: I. Regulatory processes. J. Anim. Ecol. 47(1), 219–247 (1978)

    Google Scholar 

  • Anderson, R.M., May, R.M.: The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. Lond. Ser. B 291(1054), 451–524 (1981)

    ADS  Google Scholar 

  • Barlow, N.D.: Non-linear transmission and simple models for bovine tuberculosis. J. Anim. Ecol. 69(4), 703–713 (2000)

    Google Scholar 

  • Begon, M., Bowers, R.G., Kadianakis, N., Hodgkinson, D.E.: Disease and community structure: the importance of host self-regulation in a host–host–pathogen model. Am. Nat. 139(6), 1131–1150 (1992)

    Google Scholar 

  • Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(09), 1663–1763 (2015)

    MathSciNet  CAS  Google Scholar 

  • Bellomo, N., Painter, K.J., Tao, Y., Winkler, M.: Occurence vs. absence of taxis-driven instabilities in a May–Nowak model for virus infection. SIAM J. Appl. Math. 79(5), 1990–2010 (2019)

    MathSciNet  Google Scholar 

  • Briggs, C.J., Godfray, H.C.J.: The dynamics of insect-pathogen interactions in stage-structured populations. Am. Nat. 145(6), 855–887 (1995)

    Google Scholar 

  • Capasso, V., Serio, G.: A generalization of the Kermack–McKendrick deterministic epidemic model. Math. Biosci. 42(1–2), 43–61 (1978)

    MathSciNet  Google Scholar 

  • Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building. Analysis and Interpretation. John Wiley and Sons, Chichester (2000)

    Google Scholar 

  • Dwyer, G.: Density dependence and spatial structure in the dynamics of insect pathogens. Am. Nat. 143(4), 533–562 (1994)

    ADS  Google Scholar 

  • Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)

    Google Scholar 

  • Greenman, J.V., Hudson, P.J.: Infected coexistence instability with and without density-dependent regulation. J. Theoret. Biol. 185(3), 345–356 (1997)

    ADS  Google Scholar 

  • Grenfell, B.T., Dobson, A.P.: Ecology of Infectious Disease in Natural Populations. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  • Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)

    Google Scholar 

  • Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215(1), 52–107 (2005)

    MathSciNet  ADS  Google Scholar 

  • Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains. J. Differ. Equ. 256(8), 2993–3010 (2014)

    MathSciNet  Google Scholar 

  • Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  • Knell, R.J., Begon, M., Thompson, D.J.: Transmission dynamics of Bacillus thuringiensis infecting Plodia interpunctella: a test of the mass action assumption with an insect pathogen. Proc. R. Soc. Lond. Ser. B Bio.l Sci. 263(1366), 75–81 (1996)

    CAS  ADS  Google Scholar 

  • Li, H., Xiang, T.: On a Cross-Diffusive SIS Epidemic Model with Power-Like Nonlinear Incidence. arXiv preprint arXiv: 2208.09571 (2022)

  • Li, H., Peng, R., Wang, F.B.: Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 262(2), 885–913 (2017)

    MathSciNet  ADS  Google Scholar 

  • Li, H., Peng, R., Xiang, T.: Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion. Eur. J. Appl. Math. 31(1), 26–56 (2020)

    MathSciNet  CAS  Google Scholar 

  • Liu, G., Wang, H., Zhang, X.: Epidemic dynamics and spatial segregation driven by cognitive diffusion and nonlinear incidence. Stud. Appl. Math. 151, 643–675 (2023)

    MathSciNet  Google Scholar 

  • Lou, Y., Zhao, X.-Q.: A reaction-diffusion malaria model with incubation period in the vector population. J. Math. Bio. 62(4), 543–568 (2011)

    MathSciNet  Google Scholar 

  • Martin, R.H., Smith, H.L.: Abstract functional-differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321(1), 1–44 (1990)

    MathSciNet  Google Scholar 

  • May, R.M., Anderson, R.M.: Regulation and stability of host-parasite population interactions: II. Destabilizing processes. J. Anim. Ecol. 47(1), 249–267 (1978)

    Google Scholar 

  • McCallum, H., Barlow, N., Hone, J.: How should pathogen transmission be modelled? Trends Ecol. Evol. 16(6), 295–300 (2001)

    CAS  PubMed  Google Scholar 

  • Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa 20(4), 733–737 (1996)

    MathSciNet  Google Scholar 

  • Pal, S., Ghorai, S., Banerjee, M.: Analysis of a prey-predator model with non-local interaction in the prey population. Bull. Math. Biol. 80, 906–925 (2018)

    MathSciNet  CAS  PubMed  Google Scholar 

  • Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983)

    Google Scholar 

  • Ren, X., Tian, Y., Liu, L., Liu, X.: A reaction-diffusion within-host HIV model with cell-to-cell transmission. J. Math. Biol. 76(7), 1831–1872 (2018)

    MathSciNet  PubMed  Google Scholar 

  • Schelling, T.C.: Models of segregation. Am. Econ. Rev. 59(2), 488–493 (1969)

    Google Scholar 

  • Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theor. Biol. 79(1), 83–99 (1979)

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  • Stancevic, O., Angstmann, C.N., Murray, J.M., Henry, B.I.: Turing patterns from dynamics of early HIV infection. Bull. Math. Biol. 75, 774–795 (2013)

    MathSciNet  CAS  PubMed  Google Scholar 

  • Tao, Y., Wang, Z.-A.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23(01), 1–36 (2013)

    MathSciNet  CAS  Google Scholar 

  • Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252(1), 692–715 (2012)

    MathSciNet  ADS  Google Scholar 

  • Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller–Segel model 1: motion of the concentration regions. SIAM J. Appl. Math. 64(4), 1198–1223 (2004)

    MathSciNet  Google Scholar 

  • Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller–Segel model 2: formation of the concentration regions. SIAM J. Appl. Math. 64(4), 1224–1248 (2004)

    MathSciNet  Google Scholar 

  • Wang, W., Zhao, X.-Q.: Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Sys. 11(4), 699–717 (2012)

    MathSciNet  Google Scholar 

  • Wang, H., Wang, K., Kim, Y.-J.: Spatial segregation in reaction-diffusion epidemic models. SIAM J. Appl. Math. 82(5), 1680–1709 (2022)

    MathSciNet  Google Scholar 

  • Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248(12), 2889–2905 (2010)

    MathSciNet  ADS  Google Scholar 

  • Wu, Y., Zou, X.: Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates. J. Differ. Equ. 264(8), 4989–5024 (2018)

    MathSciNet  ADS  Google Scholar 

  • Zhao, X.-Q.: Dynamical Systems in Population Biology, 2nd edn. Springer, New York (2017)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Yurij Salmaniw for his discussion and assistance in support of this work. The research of the second author was partially supported by the Natural Sciences and Engineering Research Council of Canada (Individual Discovery Grant RGPIN-2020-03911 and Discovery Accelerator Supplement Award PGPAS-2020-00090) and the Canada Research Chairs program (Tier 1 Canada Research Chair Award). The research of the third author was partially supported by the National Natural Science Foundation of China (No. 11571200) and the Natural Science Foundation of Shandong Province (No. ZR2021MA062).

Author information

Authors and Affiliations

Authors

Contributions

G.L. and H.W. proposed the idea and methodology. G.L. performed analysis and simulations. G.L. and H.W. wrote the main manuscript text. All authors reviewed and revised the manuscript.

Corresponding author

Correspondence to Hao Wang.

Ethics declarations

Conflict of Interests

The authors declare no competing interests

Additional information

Communicated by Kevin Painter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Wang, H. & Zhang, X. On a Chemotactic Host–Pathogen Model: Boundedness, Aggregation, and Segregation. J Nonlinear Sci 34, 32 (2024). https://doi.org/10.1007/s00332-023-10010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-10010-6

Keywords

Mathematics Subject Classification

Navigation