Skip to main content

Advertisement

Log in

Propagation Phenomena for Man–Environment Epidemic Model with Nonlocal Dispersals

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we focus on the propagation phenomena of a bistable man–environment epidemic model with nonlocal dispersals, where there exists a positive feedback interaction between the concentration of infectious agent and infectious human population. The monostable and bistable traveling wave solutions and three-wave entire solutions are studied. First, by applying and developing the known results for monostable case, we give a summary of the existence and asymptotic behavior of all monostable traveling wave solutions in two different monostable intervals and further find some relationship between them. The existence of bistable traveling wave solutions is obtained by introducing the results about monotone semiflows with weak compactness. Second, we give twelve types of three-wave entire solutions, which contain all possibilities of three-wave entire solutions originating from three traveling wave solutions with different nonzero wave speeds, by constructing new auxiliary functions and super- and sub-solutions for every type. We also show that these entire solutions are globally Lipschitz continuous with respect to spatial variable. In addition, the nonexistence result of entire solutions originating from more than four traveling wave solutions is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

The data that support the findings of this study are available from the authors on reasonable request.

References

  • Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.: Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, vol. 165. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

  • Bates, P.W., Fife, P.C., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138, 105–136 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Bates, P.W.: On some nonlocal evolution equations arising in materials science. Nonlinear Dyn. Evol. Equ. 48, 13–52 (2006)

    MathSciNet  MATH  Google Scholar 

  • Cannas, S.A., Marco, D.E., Montemurro, M.A.: Long range dispersal and spatial pattern formation in biological invasions. Math. Biosci. 203, 155–170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Capasso, V., Maddalena, L.: Convergence to equilibrium states for a reaction–diffusion system modelling the spatial spread of a class of bacterial and viral diseases. J. Math. Biol. 13, 173–184 (1981/82)

  • Capasso, V., Maddalena, L.: Saddle point behavior for a reaction–diffusion system: application to a class of epidemic models. Math. Comput. Simul. 24, 540–547 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Capasso, V., Wilson, R.E.: Analysis of a reaction–diffusion system modeling man–environment–man epidemics. SIAM J. Appl. Math. 57, 327–346 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132, 2433–2439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X., Guo, J.S.: Existence and uniqueness of entire solutions for a reaction–diffusion equation. J. Differ. Equ. 212, 62–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X., Guo, J.S., Ninomiya, H.: Entire solutions of reaction–diffusion equations with balanced bistable nonlinearities. Proc. Roy. Soc. Edinb. Sect. A 136, 1207–1237 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y.Y., Guo, J.S., Ninomiya, H., Yao, C.H.: Entire solutions originating from monotone fronts to the Allen–Cahn equation. Phys. D 378(379), 1–19 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Coville, J., Dávila, J., Martínez, S.: Nonlocal anisotropic dispersal with monostable nonlinearity. J. Differ. Equ. 244, 3080–3118 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Dong, F.D., Li, W.T., Wu, S.L., Zhang, L.: Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete Contin. Dyn. Syst. Ser. B 26, 1031–1060 (2021)

    MathSciNet  MATH  Google Scholar 

  • Fang, J., Zhao, X.Q.: Traveling waves for monotone semiflows with weak compactness. SIAM J. Math. Anal. 46, 3678–3704 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Fang, J., Zhao, X.Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 17, 2243–2288 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Fife, P.: Some Nonclassical Trends in Parabolic and Parabolic-like Evolutions, Trends in Nonlinear Analysis, pp. 153–191. Springer, Berlin (2003)

    MATH  Google Scholar 

  • Fukao, Y., Morita, Y., Ninomiya, H.: Some entire solutions of the Allen–Cahn equation. Proc. Third East Asia Partial Differ. Equ. Conf. 8, 15–32 (2004)

    MathSciNet  MATH  Google Scholar 

  • Guo, J.S., Wu, C.H.: Entire solutions originating from traveling fronts for a two-species competition–diffusion system. Nonlinearity 32, 3234–3268 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Hallatschek, O., Fisher, D.S.: Acceleration of evolutionary spread by long-range dispersal. Proc. Natl. Acad. Sci. USA 111, E4911–E4919 (2014)

    Article  Google Scholar 

  • Hamel, F., Nadirashvili, N.: Entire solutions of the KPP equation. Commun. Pure Appl. Math. 52, 1255–1276 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Hamel, F., Nadirashvili, N.: Travelling fronts and entire solutions of the Fisher-KPP equation in \({\mathbb{R}}^N\). Arch. Ration. Mech. Anal. 157, 91–163 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu, C.H., Yang, T.S.: Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity 26, 121–139 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, C., Kuang, Y., Li, B., Liu, H.: Spreading speeds and traveling wave solutions in cooperative integral–differential systems. Discrete Contin. Dyn. Syst. Ser. B 20, 1663–1684 (2015)

    MathSciNet  MATH  Google Scholar 

  • Kao, C.Y., Lou, Y., Shen, W.: Random dispersal versus non-local dispersal. Discrete Contin. Dyn. Syst. 26, 551–596 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, W.T., Wang, Z.C., Wu, J.: Entire solutions in monostable reaction–diffusion equations with delayed nonlinearity. J. Differ. Equ. 245, 102–129 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, W.T., Sun, Y.J., Wang, Z.C.: Entire solutions in the Fisher-KPP equation with nonlocal dispersal. Nonlinear Anal. Real World Appl. 11, 2302–2313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, W.T., Xu, W.B., Zhang, L.: Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete Contin. Dyn. Syst. 37, 2483–2512 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Martin, R.H., Smith, H.L.: Abstract functional-differential equations and reaction–diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  • Meng, Y., Yu, Z., Hsu, C.H.: Entire solutions for a delayed nonlocal dispersal system with monostable nonlinearities. Nonlinearity 32, 1206–1236 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Morita, Y., Ninomiya, H.: Entire solutions with merging fronts to reaction–diffusion equations. J. Dyn. Differ. Equ. 18, 841–861 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Murray, J.D.: Mathematical biology. II, Spatial models and biomedical applications, 3rd edition, Interdisciplinary Applied Mathematics, vol. 18. Springer, New York (2003)

  • Schumacher, K.: Travelling-front solutions for integro-differential equations. I. J. Reine Angew. Math. 316, 54–70 (1980)

    MathSciNet  MATH  Google Scholar 

  • Sun, Y.J., Li, W.T., Wang, Z.C.: Entire solutions in nonlocal dispersal equations with bistable nonlinearity. J. Differ. Equ. 251, 551–581 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme, H.R.: Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. Reine Angew. Math. 306, 94–121 (1979)

    MathSciNet  MATH  Google Scholar 

  • Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, vol. 140. American Mathematical Society, Providence (1994)

    Book  MATH  Google Scholar 

  • Weng, P., Zhao, X.Q.: Spreading speed and traveling waves for a multi-type SIS epidemic model. J. Differ. Equ. 229, 270–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, S.L., Hsu, C.H.: Existence of entire solutions for delayed monostable epidemic models. Trans. Am. Math. Soc. 368, 6033–6062 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, S.L., Chen, G.S., Hsu, C.H.: Entire solutions originating from multiple fronts of an epidemic model with nonlocal dispersal and bistable nonlinearity. J. Differ. Equ. 265, 5520–5574 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, D., Zhao, X.Q.: Erratum to: Bistable waves in an epidemic model. J. Dyn. Differ. Equ. 17, 219–247 (2005)

    Article  MATH  Google Scholar 

  • Xu, W.B., Li, W.T., Ruan, S.: Spatial propagation in an epidemic model with nonlocal diffusion: the influences of initial data and dispersals. Sci. China Math. 63, 2177–2206 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Yagisita, H.: Backward global solutions characterizing annihilation dynamics of travelling fronts. Publ. Res. Inst. Math. Sci. 39, 117–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, L., Li, W.T., Wu, S.L.: Multi-type entire solutions in a nonlocal dispersal epidemic model. J. Dyn. Differ. Equ. 28, 189–224 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, X.Q., Wang, W.: Fisher waves in an epidemic model. Discrete Contin. Dyn. Syst. Ser. B 4, 1117–1128 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Li was partially supported by NSF of China (11731005) and Xu was partially supported by China Postdoctoral Science Foundation funded project (2019M660047, 2020T130679).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Tong Li.

Additional information

Communicated by Eliot Fried.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proofs of Some Lemmas in Section 3.2

Appendix A. Proofs of Some Lemmas in Section 3.2

1.1 A.1 Proof of Lemma 3.8

We denote

$$\begin{aligned}&\epsilon _1:=\min \Big \{\frac{\phi _{11}(0)}{u_1^*},\frac{\phi _{12}(0)}{v_1^*}\Big \},\quad \epsilon _2:=\max \Big \{\frac{\phi _{11}(0)}{u_2^*},\frac{\phi _{12}(0)}{v_2^*}\Big \},\\&\epsilon _3:=\min \Big \{\frac{\phi _{21}(0)}{u_1^*},\frac{\phi _{22}(0)}{v_1^*}\Big \},\quad \epsilon _4:=\max \Big \{\frac{\phi _{21}(0)}{u_2^*},\frac{\phi _{22}(0)}{v_2^*}\Big \},\\&\epsilon _5:=\min \Big \{\frac{\phi _{31}(0)}{u_1^*},\frac{\phi _{32}(0)}{v_1^*}\Big \},\quad \epsilon _6:=\max \Big \{\frac{\phi _{31}(0)}{u_2^*},\frac{\phi _{32}(0)}{v_2^*}\Big \}. \end{aligned}$$

It follows that \(\epsilon _1\), \(\epsilon _3>1\), \(\epsilon _2\), \(\epsilon _4\), \(\epsilon _5\), \(\epsilon _6\in (0,1)\) and

$$\begin{aligned} E_1\ll \epsilon _1 E_1\le \varvec{\phi }_1(0)\le \epsilon _2 E_2\ll E_2,\\ E_0\ll \epsilon _3 E_1\le \varvec{\phi }_2(0)\le \epsilon _4 E_2\ll E_2,\\ E_0\ll \epsilon _5 E_1\le \varvec{\phi }_3(0)\le \epsilon _6 E_2\ll E_2. \end{aligned}$$

In what follows, we give the upper and lower bounds of \(\varvec{\phi }_1(\xi -q_1)\), \(\varvec{\phi }_2(\xi +q_2)\), and \(\varvec{\phi }_3(\xi +q_2)\) in four cases. The calculations are not complicated and we omit them. First, when \(\xi \le q_1(t)\), it holds that

$$\begin{aligned} E_1\le \varvec{\phi }_1(\xi -q_1)\le \epsilon _2 E_2, ~\epsilon _3 E_1\le \varvec{\phi }_2(\xi +q_2)\le E_2, ~E_0 \le \varvec{\phi }_3(\xi +q_2)\le \epsilon _6 E_2. \end{aligned}$$

Second, when \(q_1(t)\le \xi \le -q_1(t)\), we have

$$\begin{aligned} \epsilon _1 E_1\le \varvec{\phi }_1(\xi -q_1)\le E_2, ~\epsilon _3 E_1\le \varvec{\phi }_2(\xi +q_2)\le E_2, ~E_0 \le \varvec{\phi }_3(\xi +q_2)\le \epsilon _6 E_2. \end{aligned}$$

Third, when \(-q_1(t)\le \xi \le -q_2(t)\), it follows that

$$\begin{aligned} \epsilon _1 E_1\le \varvec{\phi }_1(\xi -q_1)\le E_2,~ E_0\le \varvec{\phi }_2(\xi +q_2)\le \epsilon _4 E_2,~ E_0 \le \varvec{\phi }_3(\xi +q_2)\le \epsilon _6 E_2. \end{aligned}$$

Fourth, when \(\xi \ge -q_2(t)\), we can get

$$\begin{aligned} \epsilon _1 E_1\le \varvec{\phi }_1(\xi -q_1)\le E_2, ~E_0\le \varvec{\phi }_2(\xi +q_2)\le \epsilon _4 E_2, ~\epsilon _5 E_1\le \varvec{\phi }_3(\xi +q_2)\le E_2. \end{aligned}$$

Some calculations imply that

$$\begin{aligned} \begin{aligned} 0&<u_1^*u_2^*\min \{\epsilon _3(1-\epsilon _6)(u_2^*-u_1^*),(\epsilon _1-1)(1-\epsilon _4)u_2^*\}\\&\le u_2^*[\phi _{11}(\xi -q_1)-u_1^*][u_2^*-\phi _{21}(\xi +q_1)]\\&\quad +(u_2^*-u_1^*)\phi _{21}(\xi +q_1)[u_2^*-\phi _{31}(\xi +q_2)]\\&\le 2{u_2^*}^2(u_2^*-u_1^*) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} 0&<v_1^*v_2^*\min \{\epsilon _3(1-\epsilon _6)(v_2^*-v_1^*),(\epsilon _1-1)(1-\epsilon _4)v_2^*\}\\&\le v_2^*\left[ \phi _{12}(\xi -q_1)-v_1^*\right] [v_2^*-\phi _{22}(\xi +q_1)]\\&\quad +(v_2^*-v_1^*)\phi _{22}(\xi +q_1)[v_2^*-\phi _{32}(\xi +q_2)]\\&\le 2{v_2^*}^2(v_2^*-v_1^*) \end{aligned} \end{aligned}$$

for any \(\xi \in {\mathbb {R}}\) and \(q_2\), \(q_1\) satisfying (3.17). Then, the second and third inequalities in Lemma 3.8 can be easily obtained. For the first inequality, we get from (3.12) and \(\varvec{\phi }_2'<0\) that

$$\begin{aligned} (\phi _{21}(\xi +q_1),\phi _{22}(\xi +q_1))\ge (\phi _{21}(0),\phi _{22}(0))\ge \left( \frac{u_1^*+u_2^*}{2},\frac{v_1^*+v_2^*}{2}\right) ~~\text {when}~\xi \le q_1(t). \end{aligned}$$

It follows that

$$\begin{aligned} \begin{aligned}&u_2^*[\phi _{31}(\xi +q_2)-u_1^*][u_2^*-\phi _{21}(\xi +q_1)]+\phi _{21}(\xi +q_1)[u_2^*-\phi _{31}(\xi +q_2)](u_2^*-u_1^*)\\&\quad \ge u_2^*[\phi _{31}(\xi +q_2)-u_1^*]\left( u_2^*-\frac{u_1^*+u_2^*}{2}\right) +\frac{u_1^*+u_2^*}{2}[u_2^*-\phi _{31}(\xi +q_2)](u_2^*-u_1^*)\\&\quad \ge \frac{u_2^*}{2}(u_2^*-u_1^*)^2, \end{aligned} \end{aligned}$$

and then

$$\begin{aligned} \begin{aligned} P^{x}(\xi ,t)&= \phi _{21}(u_2^*-\phi _{31})\frac{(u_2^*-u_1^*)[u_2^*(\phi _{31}-u_1^*)(u_2^*-\phi _{21})+\phi _{21}(u_2^*-\phi _{31})(u_2^*-u_1^*)]}{[u_2^*(\phi _{11}-u_1^*)(u_2^*-\phi _{21})+(u_2^*-u_1^*)\phi _{21}(u_2^*-\phi _{31})]^2}\\&\ge \frac{\epsilon _3(1-\epsilon _6)u_1^*u_2^*(u_2^*-u_1^*)\frac{u_2^*}{2}(u_2^*-u_1^*)^2}{[2{u_2^*}^2(u_2^*-u_1^*)]^2}=\frac{\epsilon _3(1-\epsilon _6)u_1^*(u_2^*-u_1^*)}{8{u_2^*}^2}. \end{aligned} \end{aligned}$$

It completes the proof.

1.2 A.2 Proof of Lemma 3.9

When \(\xi \le -q_1(t)\), we have that

$$\begin{aligned} \phi _{31}(\xi +q_2)\le \phi _{31}(0)\le u_1^*\le \phi _{11}(\xi -q_1),\quad ~\text {and}~P^{y}(\xi ,t)\ge 0. \end{aligned}$$

By \(P^{z},\phi _{11}',\phi _{31}'\ge 0\) and \(\phi _{21}'\le 0\), we have that when \(\xi \le q_1(t)\),

$$\begin{aligned} A_1(\xi ,t)=P^{x}(\xi ,t)\phi _{11}'-P^{y}(\xi ,t)\phi _{21}'+P^{z}(\xi ,t)\phi _{31}'\ge P^x(\xi ,t)\phi _{11}'\ge \frac{1}{2}P^x(\xi ,t)|\phi _{11}'|, \end{aligned}$$

and when \(\xi \le -q_1(t)\),

$$\begin{aligned} A_1(\xi ,t)\ge \frac{1}{2}\left[ P^{x}(\xi ,t)|\phi _{11}'|+P^{y}(\xi ,t)|\phi _{21}'|\right] . \end{aligned}$$

When \(-q_1(t)\le \xi \le -q_2(t)\), we have that \(P^{y}\), \(P^{z}\ge 0\). Then, we compute that

$$\begin{aligned}&A_1(\xi ,t)-\frac{1}{2}\left[ P^{y}(\xi ,t)|\phi _{21}'(\xi +q_1)|+P^{z}(\xi ,t)|\phi _{31}'(\xi +q_2)|\right] \\&\quad =P^x(\xi ,t)\phi _{11}'+\frac{1}{2}P^y(\xi ,t)|\phi _{21}'|+\frac{1}{2}P^z(\xi ,t)\phi _{31}'\ge P^x(\xi ,t)\phi _{11}'+\frac{1}{2}P^y(\xi ,t)|\phi _{21}'|\\&\quad \ge \frac{\phi _{21}(u_2^*-\phi _{31})(u_2^*-u_1^*)[u_2^*(\phi _{31}-u_1^*)(u_2^*-\phi _{21})+\phi _{21}(u_2^*-\phi _{31})(u_2^*-u_1^*)]}{[u_2^*(\phi _{11}-u_1^*)(u_2^*-\phi _{21})+(u_2^*-u_1^*)\phi _{21}(u_2^*-\phi _{31})]^2}\phi _{11}'\\&\qquad +\frac{\rho \phi _{21}(\phi _{11}-u_1^*)(u_2^*-\phi _{31}){u_2^*}^2(u_2^*-u_1^*)(\phi _{11}-\phi _{31})}{2[u_2^*(\phi _{11}-u_1^*)(u_2^*-\phi _{21})+(u_2^*-u_1^*)\phi _{21}(u_2^*-\phi _{31})]^2}\\&\quad \ge \frac{\phi _{21}(u_2^*-u_1^*)u_1^*{u_2^*}^3}{[2u_2^*(u_2^*-u_1^*)]^2}\left[ -C_0e^{-2\eta _2\delta }+\frac{\rho }{2}(\varepsilon _1-1)(1-\varepsilon _6)(\phi _{11}(0)-\phi _{31}(0))\right] \ge 0 \end{aligned}$$

for \(\delta \) sufficiently large. When \(\xi \ge -q_2(t)\), we have that \(P^z\ge 0\). Similarly, we obtain that

$$\begin{aligned}\begin{aligned}&A_1(\xi ,t)-\frac{1}{2}P^z(\xi ,t)|\phi _{31}'(\xi +q_2)|=P^x(\xi ,t)\phi _{11}'+P^y(\xi ,t)|\phi _{21}'|\\&\quad +\frac{1}{2}P^z(\xi ,t)\phi _{31}' \ge \frac{u_2^*-\phi _{31}}{[2u_2^*(u_2^*-u_1^*)]^2}\left\{ -(u_2^*-u_1^*)u_1^*{u_2^*}^3C_0e^{-2\eta _2\delta }\right. \\&\left. \quad -(u_2^*-u_1^*)^3{u_2^*}^2C_0e^{-\eta _2\delta }+\frac{\rho }{2}[(\varepsilon _1-1)u_1^*(1-\varepsilon _4){u_2^*}^2]^2\right\} \ge 0 \end{aligned}\end{aligned}$$

for \(\delta \) sufficiently large. It completes the proof.

1.3 A.3 Proof of Lemma 3.10

For given \((\xi ,t)\in {\mathbb {R}}\times {\mathbb {R}}^-\) and \(s\in {\mathbb {R}}\), when there is no confusion, we simply write

$$\begin{aligned} {\hat{\phi }}_{11}(\theta ):= & {} \phi _{11}(\xi -q_1(t)-\theta s),~{\hat{\phi }}_{21}(\theta ) :=\phi _{21}(\xi +q_1(t)-\theta s),~\text {and}~{\hat{\phi }}_{31}(\theta )\\:= & {} \phi _{31}(\xi +q_2(t)-\theta s), \end{aligned}$$

where \(\theta \in [0,1]\). Then, \(H_1(\xi ,t)\) can be represented as follows:

$$\begin{aligned} \begin{aligned} H_1(\xi ,t)=&\int _{{\mathbb {R}}}J_1(s)[P({\hat{\phi }}_{11}(1),{\hat{\phi }}_{21}(1),{\hat{\phi }}_{31}(1))-P({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(0))]{\text {d}}s\\&\quad -P_{x}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(0))\int _{{\mathbb {R}}}J_1(s)[{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)]{\text {d}}s\\&\quad -P_{y}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(0))\int _{{\mathbb {R}}}J_1(s)[{\hat{\phi }}_{21}(1)-{\hat{\phi }}_{21}(0)]{\text {d}}s\\&\quad -P_{z}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(0))\int _{{\mathbb {R}}}J_1(s)[{\hat{\phi }}_{31}(1)-{\hat{\phi }}_{31}(0)]{\text {d}}s. \end{aligned}\end{aligned}$$

We denote

$$\begin{aligned} \begin{aligned}&{\mathcal {I}}_1=P_{x}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(0)) [{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)],\\&{\mathcal {I}}_2=P_{y}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(0))[{\hat{\phi }}_{21}(1)-{\hat{\phi }}_{21}(0)],\\&{\mathcal {I}}_3=P_{z}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(0))[{\hat{\phi }}_{31}(1)-{\hat{\phi }}_{31}(0)]. \end{aligned} \end{aligned}$$

By mean value theorem, there exist \(\theta _1\), \(\theta _2\), and \(\theta _3\) in (0, 1) such that

$$\begin{aligned} P({\hat{\phi }}_{11}(1),{\hat{\phi }}_{21}(1),{\hat{\phi }}_{31}(1))-P({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(0)) ={\mathcal {I}}_4+{\mathcal {I}}_5+{\mathcal {I}}_6, \end{aligned}$$

where

$$\begin{aligned}\begin{aligned}&{\mathcal {I}}_4=P_{x}(\theta _1{\hat{\phi }}_{11}(1)+(1-\theta _1){\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(1),{\hat{\phi }}_{31}(1))[{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)],\\&{\mathcal {I}}_5=P_{y}({\hat{\phi }}_{11}(0),\theta _2{\hat{\phi }}_{21}(1)+(1-\theta _2){\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(1))[{\hat{\phi }}_{21}(1)-{\hat{\phi }}_{21}(0)],\\&{\mathcal {I}}_6=P_{z}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),\theta _3{\hat{\phi }}_{31}(1)+(1-\theta _3){\hat{\phi }}_{31}(0))[{\hat{\phi }}_{31}(1)-{\hat{\phi }}_{31}(0)]. \end{aligned}\end{aligned}$$

Then, we can get that

$$\begin{aligned} H_1(\xi ,t)=\int _{{\mathbb {R}}}J_1(s)[{\mathcal {I}}_4+{\mathcal {I}}_5+{\mathcal {I}}_6-{\mathcal {I}}_1-{\mathcal {I}}_2-{\mathcal {I}}_3]{\text {d}}s. \end{aligned}$$

Also by mean value theorem, there exist \(\theta _4\), \(\theta _5\), and \(\theta _6\) in (0, 1) such that

$$\begin{aligned}\begin{aligned}&{\mathcal {I}}_4-{\mathcal {I}}_1=P_{xx}(\theta _4{\hat{\phi }}_{11}(1)+(1-\theta _4){\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(1),{\hat{\phi }}_{31}(1))\theta _1[{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)]^2\\&\quad +P_{xy}({\hat{\phi }}_{11}(0),\theta _5{\hat{\phi }}_{21}(1)+(1-\theta _5){\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(1))[{\hat{\phi }}_{21}(1)-{\hat{\phi }}_{21}(0)][{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)]\\&\quad +P_{xz}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),\theta _6{\hat{\phi }}_{31}(1)+(1-\theta _6){\hat{\phi }}_{31}(0))[{\hat{\phi }}_{31}(1)-{\hat{\phi }}_{31}(0)][{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)]\\&\quad =\theta _1G_1(\xi ,t,s;\theta _4)+G_2(\xi ,t,s;\theta _5)+G_3(\xi ,t,s;\theta _6), \end{aligned}\end{aligned}$$

where

$$\begin{aligned}\begin{aligned} G_1(\xi ,t,s;\theta _4)&= P_{xx}(\theta _4{\hat{\phi }}_{11}(1)+(1-\theta _4){\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(1),{\hat{\phi }}_{31}(1))[{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)]^2,\\ G_2(\xi ,t,s;\theta _5)&= P_{xy}({\hat{\phi }}_{11}(0),\theta _5{\hat{\phi }}_{21}(1)+(1-\theta _5){\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(1))\\&\quad [{\hat{\phi }}_{21}(1)-{\hat{\phi }}_{21}(0)][{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)],\\ G_3(\xi ,t,s;\theta _6)&= P_{xz}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),\theta _6{\hat{\phi }}_{31}(1)+(1-\theta _6){\hat{\phi }}_{31}(0))[{\hat{\phi }}_{31}(1)-{\hat{\phi }}_{31}(0)]\\&\quad [{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)]. \end{aligned}\end{aligned}$$

There exist \(\theta _7\) and \(\theta _8\) in (0, 1) such that

$$\begin{aligned}\begin{aligned} {\mathcal {I}}_5-{\mathcal {I}}_2&=P_{yy}({\hat{\phi }}_{11}(0),\theta _7{\hat{\phi }}_{21}(1)+(1-\theta _7){\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(1))\theta _2[{\hat{\phi }}_{21}(1)-{\hat{\phi }}_{21}(0)]^2\\&\quad -P_{yz}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),\theta _8{\hat{\phi }}_{31}(1)+(1-\theta _8){\hat{\phi }}_{31}(0))\\&\quad [{\hat{\phi }}_{31}(1)-{\hat{\phi }}_{31}(0)][{\hat{\phi }}_{21}(1)-{\hat{\phi }}_{21}(0)]\\&=\theta _2G_4(\xi ,t,s;\theta _7)+G_5(\xi ,t,s;\theta _8), \end{aligned}\end{aligned}$$

where

$$\begin{aligned}\begin{aligned} G_4(\xi ,t,s;\theta _7)&= P_{yy}({\hat{\phi }}_{11}(0),\theta _7{\hat{\phi }}_{21}(1)+(1-\theta _7){\hat{\phi }}_{21}(0),{\hat{\phi }}_{31}(1))[{\hat{\phi }}_{21}(1)-{\hat{\phi }}_{21}(0)]^2,\\ G_5(\xi ,t,s;\theta _8)&= P_{yz}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),\theta _6{\hat{\phi }}_{31}(1)+(1-\theta _6){\hat{\phi }}_{31}(0))[{\hat{\phi }}_{31}(1)-{\hat{\phi }}_{31}(0)]\\&\quad [{\hat{\phi }}_{21}(1)-{\hat{\phi }}_{21}(0)]. \end{aligned}\end{aligned}$$

There is a constant \(\theta _9\in (0,1)\) such that

$$\begin{aligned} \begin{aligned} {\mathcal {I}}_6-{\mathcal {I}}_3&=P_{zz}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),\theta _9{\hat{\phi }}_{31}(1)+(1-\theta _9){\hat{\phi }}_{31}(0))\theta _3[{\hat{\phi }}_{31}(1)-{\hat{\phi }}_{31}(0)]^2\\&=\theta _3G_6(\xi ,t,s;\theta _9), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} G_6(\xi ,t,s;\theta _9):=P_{zz}({\hat{\phi }}_{11}(0),{\hat{\phi }}_{21}(0),\theta _9{\hat{\phi }}_{31}(1)+(1-\theta _9){\hat{\phi }}_{31}(0))[{\hat{\phi }}_{31}(1)-{\hat{\phi }}_{31}(0)]^2. \end{aligned}$$

Based on the above formulas, we can get that

$$\begin{aligned} \begin{aligned} H_1(\xi ,t)&=\int _{{\mathbb {R}}}J_1(s)[\theta _1G_1(\xi ,t,s;\theta _4)+G_2(\xi ,t,s;\theta _5)+G_3(\xi ,t,s;\theta _6)\\&\quad +\theta _2G_4(\xi ,t,s;\theta _7)+G_5(\xi ,t,s;\theta _8)+\theta _3G_6(\xi ,t,s;\theta _9)]{\text {d}}s. \end{aligned} \end{aligned}$$
(3.31)

In what follows, we provide the detailed estimations only for \(|G_1(\xi ,t,s;\theta _4)/ A_1(\xi ,t)|\), and for \(|G_i(\xi ,t,s;\theta _{i+3})/ A_1(\xi ,t)|\) with \(i=2,\ldots ,6\), the methods are similar. We get from the mean value theorem that

$$\begin{aligned} |{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)|= & {} |{\phi }_{11}(\xi -q_1-s)-{\phi }_{11}(\xi -q_1)| =|{\phi }_{11}'(\xi -q_1-\theta _{10}s)s|\\= & {} |{\hat{\phi }}_{11}'(\theta _{10})s|, \end{aligned}$$

where \(\theta _{10}\) is some constant in [0, 1]. In addition, for the \(C_3\) given by Lemma 3.6, there is a sufficiently large constant \(C_4\) such that

$$\begin{aligned} C_3|{\phi }_{11}(\xi -q_1-s)-{\phi }_{11}(\xi -q_1)|<C_4\quad \text {for any}~(\xi ,t)\in {\mathbb {R}}\times {\mathbb {R}}^-,s\in {\mathbb {R}}. \end{aligned}$$

Now, we consider the following six cases. Recall that the constant m, which appears below, is defined in assumption (J4).

Case 1: When \(\xi \le q_1(t)\), based on Lemmas 3.6, 3.73.8, and 3.9 (i), we have that for \(s\in \text {supp}(J_1)\), there exists a positive constant \({\tilde{M}}_1\) such that

$$\begin{aligned} \bigg |\frac{G_1(\xi ,t,s;\theta _4)}{A_1(\xi ,t)}\bigg |\le & {} \frac{2C_4|u_2^*-{\hat{\phi }}_{21}(1)|\cdot |{\hat{\phi }} _{11}(1)-{\hat{\phi }}_{11}(0)|}{P^{x}(\xi ,t)|\phi _{11}'(\xi -q_1)|}\\\le & {} \frac{2C_4|u_2^*-{\hat{\phi }}_{21}(1)|\cdot |{\hat{\phi }}_{11}'(\theta _{10})s|}{\mu _1|\phi _{11}'(\xi -q_1)|} \le \frac{2C_4m}{\mu _1}|\phi _{21}'(\xi +q_1-s)|\\&\cdot \frac{|u_2^*-\phi _{21}(\xi +q_1-s)|}{|\phi _{21}'(\xi +q_1-s)|}\cdot \frac{|\phi _{11}'(\xi -q_1-\theta _{10}s)|}{|\phi _{11}(\xi -q_1-\theta _{10}s)-u_1^*|}\\&\cdot \frac{|\phi _{11}(\xi -q_1-\theta _{10}s)-u_1^*|}{|\phi _{11}(\xi -q_1)-u_1^*|}\cdot \frac{|\phi _{11}(\xi -q_1)-u_1^*|}{|\phi _{11}'(\xi -q_1)|}\\\le & {} \frac{2C_4m}{\mu _1} C_0e^{\eta _1(\xi +q_1-s)}\frac{1}{C_1} C_2C\frac{1}{C_1}\le {\tilde{M}}_1e^{\eta _1q_1}. \end{aligned}$$

Case 2: When \(q_1(t)\le \xi \le 0\), based on Lemmas 3.63.73.8, and 3.9 (ii), we have that for \(s\in \text {supp}(J_1)\), there exists a positive constant \({\tilde{M}}_2\) such that

$$\begin{aligned} \bigg |\frac{G_1(\xi ,t,s;\theta _4)}{A_1(\xi ,t)}\bigg |\le & {} \frac{2C_4|u_2^*-{\hat{\phi }}_{21}(1)|\cdot |{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)|}{P^x(\xi ,t)|\phi _{11}'(\xi -q_1)|+P^y(\xi ,t)|\phi _{21}'(\xi +q_1)|}\\\le & {} \frac{2C_4|u_2^*-{\hat{\phi }}_{21}(1)|\cdot |{\hat{\phi }}_{11}'(\theta _{10})s|}{\mu _1|\phi _{11}'(\xi -q_1)|}\le \frac{2C_4m}{\mu _1}|\phi _{21}'(\xi +q_1-s)|\\&\cdot \frac{|u_2^*-\phi _{21}(\xi +q_1-s)|}{|\phi _{21}'(\xi +q_1-s)|}\cdot \frac{|\phi _{11}'(\xi -q_1-\theta _{10}s)|}{|u_2^*-\phi _{11}(\xi -q_1-\theta _{10}s)|}\\&\cdot \frac{|u_2^*-\phi _{11}(\xi -q_1-\theta _{10}s)|}{|u_2^*-\phi _{11} (\xi -q_1)|}\cdot \frac{|u_2^*-\phi _{11}(\xi -q_1)|}{|\phi _{11}'(\xi -q_1)|}\\\le & {} \frac{2C_4m}{\mu _1}C_0e^{\eta _1(\xi +q_1-s)}\frac{1}{C_1} C_2C\frac{1}{C_1}\le {\tilde{M}}_2e^{\eta _1q_1}. \end{aligned}$$

Case 3: When \(0\le \xi \le -q_1(t)\), based on Lemmas 3.63.7,  3.8, and 3.9 (ii), we have that for \(s\in \text {supp}(J_1)\), there exists a positive constant \({\tilde{M}}_3\) such that

$$\begin{aligned} \bigg |\frac{G_1(\xi ,t,s;\theta _4)}{A_1(\xi ,t)}\bigg |\le & {} \frac{2C_4|u_2^*-{\hat{\phi }}_{21}(1)|\cdot |{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)|}{P^x(\xi ,t)|\phi _{11}'(\xi -q_1)|+P^y(\xi ,t)|\phi _{21}'(\xi +q_1)|}\\\le & {} \frac{2C_4|u_2^*-{\hat{\phi }}_{21}(1)|\cdot |{\hat{\phi }}_{11}'(\theta _{10})s|}{\mu _2|\phi _{21}'(\xi +q_1)|}\le \frac{2C_4m}{\mu _2}|\phi _{11}'(\xi -q_1-\theta _{10}s)|\\&\cdot \frac{|u_2^*-\phi _{21}(\xi +q_1-s)|}{|u_2^*-\phi _{21}(\xi +q_1)|}\cdot \frac{|u_2^*-\phi _{21}(\xi +q_1)|}{|\phi _{21}'(\xi +q_1)|}\\\le & {} \frac{2C_4m}{\mu _2}C_0e^{-\eta _2(\xi -q_1-\theta _{10}s)}C\frac{1}{C_1}\le {\tilde{M}}_3e^{\eta _2q_1}. \end{aligned}$$

Case 4: When \(-q_1(t)v\le \xi \le (-q_1(t)-q_2(t))/2\), based on Lemma 3.63.7,  3.8, and 3.9(iii), we have that for \(s\in \text {supp}(J_1)\), there exists a positive constant \({\tilde{M}}_4\) such that

$$\begin{aligned} \bigg |\frac{G_1(\xi ,t,s;\theta _4)}{A_1(\xi ,t)}\bigg |\le & {} \frac{2C_4|{\hat{\phi }}_{21}(1)|\cdot |{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)|}{P^y(\xi ,t)|\phi _{21}'(\xi +q_1)|+P^z(\xi ,t)|\phi _{31}'(\xi +q_2)|}\\\le & {} \frac{2C_4|{\hat{\phi }}_{21}(1)|\cdot |{\hat{\phi }}_{11}'(\theta _{10})s|}{\mu _2|\phi _{21}'(\xi +q_1)|} \le \frac{2C_4m}{\mu _2}|\phi _{11}'(\xi -q_1-\theta _{10}s)|\\&\cdot \frac{|\phi _{21}(\xi +q_1-s)|}{|\phi _{21}(\xi +q_1)|}\cdot \frac{|\phi _{21}(\xi +q_1)|}{|\phi _{21}'(\xi +q_1)|}\\\le & {} \frac{2C_4m}{\mu _2}C_0e^{-\eta _2(\xi -q_1-\theta _{10}s)}C\frac{1}{C_1}\le {\tilde{M}}_4e^{\eta _2q_1}. \end{aligned}$$

Case 5: When \((-q_1(t)-q_2(t))/2\le \xi \le -q_2(t)\), based on Lemmas 3.63.7,  3.8, and 3.9 (iii), we have that for \(s\in \text {supp}(J_1)\), there exists a positive constant \({\tilde{M}}_5\) such that

$$\begin{aligned} \bigg |\frac{G_1(\xi ,t,s;\theta _4)}{A_1(\xi ,t)}\bigg |\le & {} \frac{2C_4|{\hat{\phi }}_{21}(1)|\cdot |{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)|}{P^y(\xi ,t)|\phi _{21}'(\xi +q_1)|+P^z(\xi ,t)|\phi _{31}'(\xi +q_2)|}\\\le & {} \frac{2C_4|{\hat{\phi }}_{21}(1)|\cdot |{\hat{\phi }}_{11}'(\theta _{10})s|}{\mu _2|\phi _{21}'(\xi +q_1)|}\le \frac{2C_4m}{\mu _2}|\phi _{11}'(\xi -q_1-\theta _{10}s)|\\&\cdot \frac{|\phi _{21}(\xi +q_1-s)|}{|\phi _{21}(\xi +q_1)|}\cdot \frac{|\phi _{21}(\xi +q_1)|}{|\phi _{21}'(\xi +q_1)|}\\\le & {} \frac{2C_4m}{\mu _2}C_0e^{-\eta _2(\xi -q_1-\theta _{10}s)}C\frac{1}{C_1}\le {\tilde{M}}_5e^{\eta _2q_1}. \end{aligned}$$

Case 6: When \(\xi \ge -q_2(t)\), based on Lemmas 3.6, 3.7,  3.8, and 3.9 (iv), we have that for \(s\in \text {supp}(J_1)\), there exists a positive constant \({\tilde{M}}_6\) such that

$$\begin{aligned} \bigg |\frac{G_1(\xi ,t,s;\theta _4)}{A_1(\xi ,t)}\bigg |\le & {} \frac{2C_4|u_2^*-{\hat{\phi }}_{31}(1)|\cdot |{\hat{\phi }}_{11}(1)-{\hat{\phi }}_{11}(0)|}{P^z(\xi ,t)|\phi _{31}'(\xi +q_2)|}\\\le & {} \frac{2C_4|u_2^*-{\hat{\phi }}_{31}(1)|\cdot |{\hat{\phi }}_{11}'(\theta _{10})s|}{\mu _3|\phi _{31}'(\xi +q_2)|}\le \frac{2C_4m}{\mu _3}|\phi _{11}'(\xi -q_1-\theta _{10}s)|\\&\cdot \frac{|u_2^*-\phi _{31}(\xi +q_2-s)|}{|u_2^*-\phi _{31}(\xi +q_2)|}\cdot \frac{|u_2^*-\phi _{31}(\xi +q_2)|}{|\phi _{31}'(\xi +q_2)|}\\\le & {} \frac{2C_4m}{\mu _3}C_0e^{-\eta _2(\xi -q_1-\theta _{10}s)}C\frac{1}{C_1}\le {\tilde{M}}_6e^{\eta _2q_1}. \end{aligned}$$

With the above estimates, we can get (3.19) from (3.31) and \(\int _{{\mathbb {R}}}J_1(x) dx=1\), immediately. It completes the proof.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, RY., Li, WT. & Xu, WB. Propagation Phenomena for Man–Environment Epidemic Model with Nonlocal Dispersals. J Nonlinear Sci 32, 67 (2022). https://doi.org/10.1007/s00332-022-09825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09825-6

Keywords

Mathematics Subject Classification

Navigation