Skip to main content
Log in

Dimension Reduction and Optimality of the Uniform State in a Phase-Field-Crystal Model Involving a Higher-Order Functional

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study a phase-field-crystal model described by a free energy functional involving second-order derivatives of the order parameter in a periodic setting and under a fixed mass constraint. We prove a \(\Gamma \)-convergence result in an asymptotic thin-film regime leading to a reduced two-dimensional model. For the reduced model, we prove necessary and sufficient conditions for the global minimality of the uniform state. We also prove similar results for the Ohta–Kawasaki model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If \(k=(2\pi s, 2\pi t)\), then its Euclidian norm is denoted by \(|k|^2=4\pi ^2(s^2+t^2)\).

  2. This computation is carried out for \(\varphi \) smooth in V and the result follows for general \(\varphi \in V\) by a standard density argument.

  3. One inequality comes from (3.5). To prove that 1 is indeed the infimum in (3.6), it is enough to consider the case of dimension \(N=1\): for every \(n\ge 1\), let \(v_n=n\) in \((0,\frac{1}{n})\) and \(v_n=-\frac{n}{n-1}\) in \((\frac{1}{n},1)\). Then the sequence

    $$\begin{aligned}u_n=\left( \int _{\mathbb {T}}v_n^3\right) ^{-\frac{1}{3}}v_n\end{aligned}$$

    is a minimizing sequence in (3.6) yielding the value 1 for the infimum.

References

  • Ambrosio, L., De Lellis, C., Mantegazza, C.: Line energies for gradient vector fields in the plane. Calc. Var. Partial Differ. Equ. 9(4), 327–255 (1999)

    Article  MathSciNet  Google Scholar 

  • Aviles, P., Giga, Y.: A mathematical problem related to the physical theory of liquid crystal configurations, In: Miniconference on Geometry and Partial Differential Equations. Proceedings Centre for Mathematical Analysis by the Australian National University, vol. 12, pp. 1–16 (1987)

  • Aviles, P., Giga, Y.: On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields. Proc. R. Soc. Edinb. Sect. A 129(1), 1–17 (1999)

    Article  MathSciNet  Google Scholar 

  • Backofen, R., Voigt, A.: A phase-field-crystal approach to critical nuclei. J. Phys. Condens. Matter 22, 364104 (2010)

    Article  Google Scholar 

  • Beardmore, R.E., Peletier, M.A., Budd, C.J., Wadee, M.A.: Bifurcations of periodic solutions satisfying the zero-Hamiltonian constraint in reversible differential equations. SIAM J. Math. Anal. 36(5), 1461–1488 (2005)

    Article  MathSciNet  Google Scholar 

  • Bonheure, D., Hamel, F.: One-dimensional symmetry and Liouville type results for the fourth order Allen–Cahn equation in \(\mathbb{R}^{N}\). Chin. Ann. Math. 38B(1), 149–172 (2017)

    Article  Google Scholar 

  • Chermisi, M., Dal Maso, G., Fonseca, I., Leoni, G.: Singular perturbation models in phase transitions for second-order materials. Indiana Univ. Math. J. 60, 367–409 (2011)

    Article  MathSciNet  Google Scholar 

  • Choksi, R., Peletier, M.A., Williams, J.: On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn–Hilliard functional. SIAM J. Appl. Math. 69–6, 1712–1738 (2009)

    Article  MathSciNet  Google Scholar 

  • Cicalese, M., Spadaro, E.N., Zeppieri, C.I.: Asymptotic analysis of a second-order singular perturbation model for phase transitions. Calc. Var. Partial Differ. Equ. 41, 127–150 (2011)

    Article  MathSciNet  Google Scholar 

  • Conti, S., Fonseca, I.: A \(\Gamma \)-convergence result for the two-gradient theory of phase transitions. Commun. Pure Appl. Math. 55(7), 857–936 (2002)

    Article  MathSciNet  Google Scholar 

  • De Giorgi, E.: Sulla convergenza di alcune successioni di integrali del tipo dell’area. Rend. Mat. (IV) 8, 277–294 (1975)

    MathSciNet  MATH  Google Scholar 

  • Dee, G.T., van Saarloos, W.: Bistable systems with propagating fronts leading to pattern formation. Phys. Rev. Lett. 60, 2641–2644 (1988)

    Article  Google Scholar 

  • Doelman, A., Sandstede, B., Scheel, A., Schneider, G.: Propagation of hexagonal patterns near onset. Eur. J. Appl. Math. 14(1), 85–110 (2003)

    Article  MathSciNet  Google Scholar 

  • Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. 70, 051605 (2004)

    Google Scholar 

  • Elder, K.R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 24(88), 245701 (2002)

    Article  Google Scholar 

  • Elder, K.R., Provatas, N., Berry, J., Stefanovic, P., Grant, M.: Phase-field crystal modeling and classical density functional theory of freezing. Phys. Rev. B 75, 064107 (2007)

    Article  Google Scholar 

  • Emmerich, H., Lowen, H., Wittkowski, R., Gruhn, T., Toth, G.-I., Tegze, G., Granasy, L.: Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview. Adv. Phys. 61(6), 665–743 (2012)

    Article  Google Scholar 

  • Fonseca, I., Mantegazza, C.: Second order singular perturbation models for phase transitions. SIAM J. Math. Anal. 31(5), 1121–1143 (2000)

    Article  MathSciNet  Google Scholar 

  • Glasner, K.: Spatially localized structures in diblock copolymer mixtures. SIAM J. Appl. Math. 70, 2045–2074 (2010)

    Article  MathSciNet  Google Scholar 

  • Hilhorst, D., Peletier, L.A., Schatzle, R.: \(\Gamma \)-limit for the extended Fisher-Kolmogorov equation. Proc. R. Soc. Edinb. 132A, 141–162 (2002)

    Article  MathSciNet  Google Scholar 

  • Ignat, R., Monteil, A.: A DeGiorgi type conjecture for minimal solutions to a nonlinear Stokes equation. Commun. Pure Appl. Math. arXiv:1804.07502 (2018)

  • Jin, W., Kohn, R.V.: Singular perturbation and the energy of folds. J. Nonlinear Sci. 10(3), 355–390 (2000)

    Article  MathSciNet  Google Scholar 

  • Le Dret, H., Zorgati, H.: Asymptotic modeling of thin curved martensitic films. Asymptot. Anal. 48, 141–171 (2006)

    MathSciNet  MATH  Google Scholar 

  • Mizel, V.J., Peletier, L.A., Troy, W.C.: Periodic phases in second-order materials. Arch. Ration. Mech. Anal. 145, 343–382 (1998)

    Article  MathSciNet  Google Scholar 

  • Ohta, T., Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19, 2621–2632 (1986)

    Article  Google Scholar 

  • Peletier, L.A., Troy, W.C.: Spatial patterns described by the extended Fisher–Kolmogorov equation: periodic solutions. SIAM J. Math. Anal. 28(6), 1317–1353 (1997)

    Article  MathSciNet  Google Scholar 

  • Shirokoff, D., Choksi, R., Nave, J.-C.: Sufficient condition for global minimality of metastable states in a class of non-convex functionals: a simple approach via convex lower bounds. J. Nonlinear Sci. 25, 539–582 (2015)

    Article  MathSciNet  Google Scholar 

  • Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977)

    Article  Google Scholar 

  • van den Berg, J.B., Williams, J.F.: Validation of the bifurcation diagram in the 2D Ohta–Kawasaki problem. Nonlinearity 30(4), 1584–1638 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Xavier Lamy for useful comments. R.I. acknowledges partial support by the ANR Project ANR-14-CE25-0009-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Ignat.

Additional information

Communicated by Dr. Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignat, R., Zorgati, H. Dimension Reduction and Optimality of the Uniform State in a Phase-Field-Crystal Model Involving a Higher-Order Functional. J Nonlinear Sci 30, 261–282 (2020). https://doi.org/10.1007/s00332-019-09573-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09573-0

Keywords

Mathematics Subject Classification

Navigation