Skip to main content
Log in

Loss of Energy Concentration in Nonlinear Evolution Beam Equations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation

$$\begin{aligned} u_{tt} + u_{xxxx} + f(u)= g(x, t) \end{aligned}$$

in bounded space–time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abramian, A.K., van Horssen, W.T., Vakulenko, S.A.: On oscillations of a beam with a small rigidity and a time-varying mass. Nonlinear Dyn. 78, 449–459 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Alonso, J.M., Ortega, R.: Roots of unity and unbounded motions of an asymmetric oscillator. J. Differ. Equ. 143, 201–220 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Ammann, O.H., von Kármán, T., Woodruff, G.B.: The failure of the Tacoma Narrows Bridge. Federal Works Agency, USA (1941)

    Google Scholar 

  • Arioli, G., Gazzola, F.: A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge collapse. Appl. Math. Model. 39, 901–912 (2015)

    Article  MathSciNet  Google Scholar 

  • Augusti, G., Sepe, V.: A “deformable section” model for the dynamics of suspension bridges. Part I: model and linear response. Wind Struct. 4, 1–18 (2001)

    Article  Google Scholar 

  • Bartoli, G., Spinelli, P.: The stochastic differential calculus for the determination of structural response under wind. J. Wind Eng. Ind. Aerodyn. 48, 175–188 (1993)

    Article  Google Scholar 

  • Battisti, U., Berchio, E., Ferrero, A., Gazzola, F.: Energy transfer between modes in a nonlinear beam equation. J. Math. Pures. Appl. (2017). arXiv:1703.06502v1

  • Berchio, E., Ferrero, A., Gazzola, F.: Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions. Nonlinear Anal. Real World Appl. 28, 91–125 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Berchio, E., Gazzola, F.: A qualitative explanation of the origin of torsional instability in suspension bridges. Nonlinear Anal. Theory Methods Appl. 121, 54–72 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Berchio, E., Gazzola, F., Zanini, C.: Which residual mode captures the energy of the dominating mode in second order Hamiltonian systems? SIAM J. Appl. Dyn. Syst. 15, 338–355 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Berkovits, J., Drábek, P., Leinfelder, H., Mustonen, V., Tajčová, G.: Time-periodic oscillations in suspension bridges: existence of unique solutions. Nonlinear Anal. Real World Appl. 1, 345–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Bochicchio, I., Giorgi, C., Vuk, E.: On some nonlinear models for suspension bridges. In: D. Andreucci, S. Carillo, M. Fabrizio, P. Loreti, D. Sforza (eds.) Proceedings of the Conference Evolution Equations and Materials with Memory, Rome, 12–14 July 2010 (2011)

  • Bochicchio, I., Giorgi, C., Vuk, E.: Asymptotic dynamics of nonlinear coupled suspension bridge equations. J. Math. Anal. Appl. 402, 319–333 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Bochicchio, I., Giorgi, C., Vuk, E.: On the viscoelastic coupled suspension bridge. Evol. Equ. Control Theory 3, 373–397 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Boertjens, G.J., van Horssen, W.T.: On mode interactions for a weakly nonlinear beam equation. Nonlinear Dyn. 17, 23–40 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Boertjens, G.J., van Horssen, W.T.: An asymptotic theory for a weakly nonlinear beam equation with a quadratic perturbation. SIAM J. Appl. Math. 60, 602–632 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Boertjens, G.J., van Horssen, W.T.: On interactions of oscillation modes for a weakly non-linear undamped elastic beam with an external force. J. Sound Vib. 235, 201–217 (2000)

    Article  Google Scholar 

  • Brownjohn, J.M.W.: Observations on non-linear dynamic characteristics of suspension bridges. Earthq. Eng. Struct. Dyn. 23, 1351–1367 (1994)

    Article  Google Scholar 

  • Buitelaar, R.P.: On the averaging method for rod equations with quadratic nonlinearity. Math. Methods. Appl. Sci. 17, 209–228 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Cazenave, T., Weissler, F.B.: Asymptotically periodic solutions for a class of nonlinear coupled oscillators. Portugal. Math. 52, 109–123 (1995)

    MathSciNet  MATH  Google Scholar 

  • Cazenave, T., Weissler, F.B.: Unstable simple modes of the nonlinear string. Q. Appl. Math. 54, 287–305 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Dancer, E.N.: Boundary-value problems for weakly nonlinear ordinary differential equations. Bull. Aust. Math. Soc. 15, 321–328 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Drábek, P., Holubová, G., Matas, A., Nečesal, P.: Nonlinear models of suspension bridges: discussion of the results. Appl. Math. 48, 497–514 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Drábek, P., Leinfelder, H., Tajčová, G.: Coupled string-beam equations as a model of suspension bridges. Appl. Math. 44, 97–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Fabry, C.: Behavior of forced asymmetric oscillators at resonance. Electron. J. Differ. Equ. 74, 1–15 (2000)

    MathSciNet  MATH  Google Scholar 

  • Fabry, C., Fonda, A.: Nonlinear resonance in asymmetric oscillators. J. Differ. Equ. 147, 58–78 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Gazzola, F.: Mathematical Models for Suspension Bridges, vol. 15. MS&A Springer, Berlin (2015)

    MATH  Google Scholar 

  • Gazzola, F., Wang, Y.: Modeling suspension bridges through the von Kármán quasilinear plate equations, progress in nonlinear differential equations and their applications. In: Contributions to Nonlinear Differential Equations and Systems, a Tribute to Djairo Guedes de Figueiredo on Occasion of his 80th Birthday, pp. 269–297 (2015)

  • Holubová, G., Matas, A.: Initial-boundary value problem for the nonlinear string-beam system. J. Math. Anal. Appl. 288, 784–802 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Jacover, D., McKenna, P.J.: Nonlinear torsional flexings in a periodically forced suspended beam. J. Comput. Appl. Math. 52, 241–265 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Krol, M.S.: On a Galerkin-averaging method for weakly non-linear wave equations. Math. Methods Appl. Sci. 11, 649–664 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Lazer, A.C., McKenna, P.J.: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32, 537–578 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Mawhin, J.: Resonance and nonlinearity: a survey. Ukr. Math. J. 59, 197–214 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • McKenna, P.J., Walter, W.: Nonlinear oscillations in a suspension bridge. Arch. Rat. Mech. Anal. 98, 167–177 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Ortega, R.: Periodic perturbations of an isochronous center. Qual. Theory Dyn. Syst. 3, 83–91 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Plaut, R.H., Davis, F.M.: Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges. J. Sound Vib. 307, 894–905 (2007)

    Article  Google Scholar 

  • Sweers, G.: A survey on boundary conditions for the biharmonic. Complex Var. Elliptic Equ. 54, 79–93 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics, vol. 68. AMS Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  • Wagner, H.: Über die entstehung des dynamischen auftriebes von tragflügeln. Z. Angew. Math. Mech. 5, 17–35 (1925)

    Article  MATH  Google Scholar 

  • Weisstein, E.W.: Multiple-Angle Formulas, From MathWorld, A Wolfram Web Resource, http://mathworld.wolfram.com/Multiple-AngleFormulas.html

Download references

Acknowledgements

The second author is partially supported by the PRIN project Equazioni alle derivate parziali di tipo ellittico e parabolico: aspetti geometrici, disuguaglianze collegate, e applicazioni. Both authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The authors are grateful to the anonymous referees, whose valuable comments allowed to considerably improve the paper and its readability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Gazzola.

Additional information

Communicated by Gabor Stepan.

Appendix

Appendix

We state here the result that we have used in Sect. 6 for the computation of some integral terms when dealing with the nonlinearity \(f(u)=u^3\). The proof follows from the prosthaphaeresis formulas.

Lemma 16

For all \(p\in {\mathbb {N}}\), we have

$$\begin{aligned} \frac{8}{\pi }\int _0^\pi \sin ^4(px)\, \mathrm{d}x=3 . \end{aligned}$$

For all \(p,q\in {\mathbb {N}}\) (\(q\ne p\)), we have

$$\begin{aligned} \frac{8}{\pi }\int _0^\pi \sin ^2(px)\sin ^2(qx)\, \mathrm{d}x=2 . \end{aligned}$$

For all \(p,q\in {\mathbb {N}}\) (\(q\ne p\)), we have

$$\begin{aligned} \frac{8}{\pi }\int _0^\pi \sin ^3(px)\sin (qx)\, \mathrm{d}x=\left\{ \begin{array}{ll}-1\ &{}\quad \hbox {if }q=3p\\ 0\ &{}\quad \hbox {if }q\ne 3p . \end{array}\right. \end{aligned}$$

For all \(p,q,r\in {\mathbb {N}}\) (all different and \(q<r\)), we have

$$\begin{aligned} \frac{8}{\pi }\int _0^\pi \sin ^2(px)\sin (qx)\sin (rx)\, \mathrm{d}x=\left\{ \begin{array}{ll}1\ &{}\quad \hbox {if }r+q=2p\\ -1\ &{}\quad \hbox {if }r-q=2p\\ 0\ &{}\quad \hbox {if }r\pm q\ne 2p . \end{array}\right. \end{aligned}$$

For all \(p,q,r,s\in {\mathbb {N}}\) (all different and \(p<q\), \(r<s\)), we have

$$\begin{aligned} \frac{8}{\pi }\int _0^\pi \sin (px)\sin (qx)\sin (rx)\sin (sx)\, \mathrm{d}x=\left\{ \begin{array}{ll}1\ &{}\quad \hbox {if }q\pm p=s\pm r\\ -1\ &{}\quad \hbox {if }q\pm p=s\mp r\\ 0\ &{}\quad \hbox {otherwise.} \end{array}\right. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrione, M., Gazzola, F. Loss of Energy Concentration in Nonlinear Evolution Beam Equations. J Nonlinear Sci 27, 1789–1827 (2017). https://doi.org/10.1007/s00332-017-9386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9386-1

Keywords

Mathematics Subject Classification

Navigation