Skip to main content
Log in

Can we predict pathology without surgery? Weighing the added value of multiparametric MRI and whole prostate radiomics in integrative machine learning models

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To test the ability of high-performance machine learning (ML) models employing clinical, radiological, and radiomic variables to improve non-invasive prediction of the pathological status of prostate cancer (PCa) in a large, single-institution cohort.

Methods

Patients who underwent multiparametric MRI and prostatectomy in our institution in 2015–2018 were considered; a total of 949 patients were included. Gradient-boosted decision tree models were separately trained using clinical features alone and in combination with radiological reporting and/or prostate radiomic features to predict pathological T, pathological N, ISUP score, and their change from preclinical assessment. Model behavior was analyzed in terms of performance, feature importance, Shapley additive explanation (SHAP) values, and mean absolute error (MAE). The best model was compared against a naïve model mimicking clinical workflow.

Results

The model including all variables was the best performing (AUC values ranging from 0.73 to 0.96 for the six endpoints). Radiomic features brought a small yet measurable boost in performance, with the SHAP values indicating that their contribution can be critical to successful prediction of endpoints for individual patients. MAEs were lower for low-risk patients, suggesting that the models find them easier to classify. The best model outperformed (p ≤ 0.0001) clinical baseline, resulting in significantly fewer false negative predictions and overall was less prone to under-staging.

Conclusions

Our results highlight the potential benefit of integrative ML models for pathological status prediction in PCa. Additional studies regarding clinical integration of such models can provide valuable information for personalizing therapy offering a tool to improve non-invasive prediction of pathological status.

Clinical relevance statement

The best machine learning model was less prone to under-staging of the disease. The improved accuracy of our pathological prediction models could constitute an asset to the clinical workflow by providing clinicians with accurate pathological predictions prior to treatment.

Key Points

Currently, the most common strategies for pre-surgical stratification of prostate cancer (PCa) patients have shown to have suboptimal performances.

The addition of radiological features to the clinical features gave a considerable boost in model performance. Our best model outperforms the naïve model, avoiding under-staging and resulting in a critical advantage in the clinic.

Machine learning models incorporating clinical, radiological, and radiomics features significantly improved accuracy of pathological prediction in prostate cancer, possibly constituting an asset to the clinical workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

AI:

Artificial intelligence

AUC:

Area under the curve

cN:

Clinical N stage

cT:

Clinical T stage

EPE:

Extraprostatic extension

GBDT:

Gradient-boosted decision tree

GS:

Gleason Score

ISUP :

International Society of Urological Pathology

MAE:

Mean absolute error

MCC:

Matthews correlation coefficient

ML:

Machine learning

mp-MRI:

Multiparametric magnetic resonance imaging

PCa:

Prostate cancer

PI-RADS:

Prostate Imaging Reporting and Data System

pN:

Pathological N stage

Post-op:

Post-operative

PSA:

Prostate-specific antigen

pT:

Pathological T stage

RP:

Radical prostatectomy

RT:

Radiation therapy

SHAP:

SHapley Additive exPlanations

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  3. Hamdy FC, Donovan JL, Lane JA et al (2016) 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med 375:1415–1424. https://doi.org/10.1056/NEJMoa1606220

    Article  PubMed  Google Scholar 

  4. Mottet N, van den Bergh RCN, Briers E et al (2021) EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol 79:243–262. https://doi.org/10.1016/j.eururo.2020.09.042

    Article  CAS  PubMed  Google Scholar 

  5. Schaeffer E, An Y, Barocas D et al (2022) NCCN Guidelines Version 1.2023 Prostate Cancer. In: Available from: https://www.nccn.org/home/. Accessed 1 Mar 2023

  6. Rodrigues G, Warde P, Pickles T et al (2012) Pre-treatment risk stratification of prostate cancer patients: a critical review. Can Urol Assoc J 6:121–127. https://doi.org/10.5489/cuaj.11085

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stolzenbach LF, Rosiello G, Pecoraro A et al (2020) Prostate cancer grade and stage misclassification in active surveillance candidates: Black versus White patients. J Natl Compr Canc Netw 18:1492–1499. https://doi.org/10.6004/jnccn.2020.7580

    Article  PubMed  Google Scholar 

  8. Yang DD, Mahal BA, Muralidhar V et al (2019) Risk of upgrading and upstaging among 10 000 patients with Gleason 3+4 favorable intermediate-risk prostate cancer. Eur Urol Focus 5:69–76. https://doi.org/10.1016/j.euf.2017.05.011

    Article  PubMed  Google Scholar 

  9. Daskivich TJ, Wood LN, Skarecky D et al (2017) Limitations of the National Comprehensive Cancer Network® (NCCN®) Guidelines for Prediction of Limited Life Expectancy in Men with Prostate Cancer. J Urol 197:356–362. https://doi.org/10.1016/j.juro.2016.08.096

    Article  PubMed  Google Scholar 

  10. Martin NE, Chen M-H, Zhang D et al (2017) Unfavorable intermediate-risk prostate cancer and the odds of upgrading to gleason 8 or higher at prostatectomy. Clin Genitourin Cancer 15:237–241. https://doi.org/10.1016/j.clgc.2016.06.001

    Article  PubMed  Google Scholar 

  11. Sorce G, Flammia RS, Hoeh B et al (2022) Grade and stage misclassification in intermediate unfavorable-risk prostate cancer radiotherapy candidates. Prostate 82:1040–1050. https://doi.org/10.1002/pros.24349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Epstein JI, Egevad L, Amin MB et al (2016) The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol 40 244–252. https://doi.org/10.1097/PAS.0000000000000530

  13. Ahmed HU, El-Shater Bosaily A, Brown LC et al (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389:815–822. https://doi.org/10.1016/S0140-6736(16)32401-1

    Article  PubMed  Google Scholar 

  14. Weinreb JC, Barentsz JO, Choyke PL et al (2016) PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. Eur Urol 69:16–40. https://doi.org/10.1016/j.eururo.2015.08.052

    Article  PubMed  Google Scholar 

  15. Wibmer AG, Chaim J, Lakhman Y et al (2021) Oncologic outcomes after localized prostate cancer treatment: associations with pretreatment prostate magnetic resonance imaging findings. J Urol 205:1055–1062. https://doi.org/10.1097/JU.0000000000001474

    Article  PubMed  Google Scholar 

  16. Hassanzadeh E, Glazer DI, Dunne RM et al (2017) Prostate imaging reporting and data system version 2 (PI-RADS v2): a pictorial review. Abdom Radiol (NY) 42:278–289. https://doi.org/10.1007/s00261-016-0871-z

    Article  PubMed  Google Scholar 

  17. Kasivisvanathan V, Rannikko AS, Borghi M et al (2018) MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 378:1767–1777. https://doi.org/10.1056/NEJMoa1801993

    Article  PubMed  PubMed Central  Google Scholar 

  18. Algohary A, Viswanath S, Shiradkar R et al (2018) Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: preliminary findings. J Magn Reson Imaging. https://doi.org/10.1002/jmri.25983

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alessi S, Pricolo P, Summers P et al (2019) Low PI-RADS assessment category excludes extraprostatic extension (≥pT3a) of prostate cancer: a histology-validated study including 301 operated patients. Eur Radiol 29:5478–5487. https://doi.org/10.1007/s00330-019-06092-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757. https://doi.org/10.1007/s00330-011-2377-y

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chaddad A, Kucharczyk MJ, Niazi T (2018) Multimodal radiomic features for the predicting Gleason score of prostate cancer. Cancers (Basel) 10:E249. https://doi.org/10.3390/cancers10080249

    Article  Google Scholar 

  22. Mazzone E, Stabile A, Pellegrino F et al (2021) Positive predictive value of Prostate Imaging Reporting and Data System Version 2 for the detection of clinically significant prostate cancer: a systematic review and meta-analysis. Eur Urol Oncol 4:697–713. https://doi.org/10.1016/j.euo.2020.12.004

    Article  PubMed  Google Scholar 

  23. Grimm P, Billiet I, Bostwick D et al (2012) Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group: CANCER CONTROL RATES: COMPARISON OF TREATMENT OPTIONS. BJU Int 109:22–29. https://doi.org/10.1111/j.1464-410X.2011.10827.x

    Article  PubMed  Google Scholar 

  24. Artibani W, Porcaro AB, De Marco V et al (2018) Management of biochemical recurrence after primary curative treatment for prostate cancer: a review. Urol Int 100:251–262. https://doi.org/10.1159/000481438

    Article  CAS  PubMed  Google Scholar 

  25. Kornberg Z, Cooperberg MR, Spratt DE, Feng FY (2018) Genomic biomarkers in prostate cancer. Transl Androl Urol 7:459–471. https://doi.org/10.21037/tau.2018.06.02

    Article  PubMed  PubMed Central  Google Scholar 

  26. Eggener SE, Rumble RB, Beltran H (2020) Molecular biomarkers in localized prostate cancer: ASCO Guideline Summary. JCO Oncol Pract 16:340–343. https://doi.org/10.1200/JOP.19.00752

    Article  PubMed  Google Scholar 

  27. Gaudreau P-O, Stagg J, Soulières D, Saad F (2016) The present and future of biomarkers in prostate cancer: proteomics, genomics, and immunology advancements. Biomark Cancer 8:15–33. https://doi.org/10.4137/BIC.S31802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu M, Fang M, Zou J et al (2019) Using biparametric MRI radiomics signature to differentiate between benign and malignant prostate lesions. Eur J Radiol 114:38–44. https://doi.org/10.1016/j.ejrad.2019.02.032

    Article  PubMed  Google Scholar 

  29. Zhou Y, Yuan J, Xue C et al (2022) A pilot study of MRI radiomics for high-risk prostate cancer stratification in 1.5 T MR-guided radiotherapy. Magn Reson Med. https://doi.org/10.1002/mrm.29564

  30. Gaudiano C, Mottola M, Bianchi L et al (2022) Beyond multiparametric MRI and towards radiomics to detect prostate cancer: a machine learning model to predict clinically significant lesions. Cancers (Basel) 14:6156. https://doi.org/10.3390/cancers14246156

    Article  PubMed  Google Scholar 

  31. Woźnicki P, Westhoff N, Huber T et al (2020) Multiparametric MRI for prostate cancer characterization: combined use of radiomics model with PI-RADS and clinical parameters. Cancers (Basel) 12:1767. https://doi.org/10.3390/cancers12071767

    Article  PubMed  Google Scholar 

  32. Zhang L, Zhe X, Tang M et al (2021) Predicting the grade of prostate cancer based on a biparametric MRI radiomics signature. Contrast Media Mol Imaging 2021:7830909. https://doi.org/10.1155/2021/7830909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong D, Tang L, Li Z-Y et al (2019) Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. Ann Oncol 30:431–438. https://doi.org/10.1093/annonc/mdz001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446. https://doi.org/10.1016/j.ejca.2011.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bourbonne V, Vallières M, Lucia F et al (2019) MRI-derived radiomics to guide post-operative management for high-risk prostate cancer. Front Oncol 9:807. https://doi.org/10.3389/fonc.2019.00807

    Article  PubMed  PubMed Central  Google Scholar 

  36. Abdollahi H, Mofid B, Shiri I et al (2019) Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. Radiol Med 124:555–567. https://doi.org/10.1007/s11547-018-0966-4

    Article  PubMed  Google Scholar 

  37. Jia Y, Quan S, Ren J et al (2022) MRI radiomics predicts progression-free survival in prostate cancer. Front Oncol 12:974257. https://doi.org/10.3389/fonc.2022.974257

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ferro M, de Cobelli O, Musi G et al (2022) Radiomics in prostate cancer: an up-to-date review. Ther Adv Urol 14:17562872221109020. https://doi.org/10.1177/17562872221109020

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pirrone G, Matrone F, Chiovati P et al (2022) Predicting local failure after partial prostate re-irradiation using a dosiomic-based machine learning model. J Pers Med 12:1491. https://doi.org/10.3390/jpm12091491

    Article  PubMed  PubMed Central  Google Scholar 

  40. Esteva A, Feng J, van der Wal D et al (2022) Prostate cancer therapy personalization via multi-modal deep learning on randomized phase III clinical trials. NPJ Digit Med 5:71. https://doi.org/10.1038/s41746-022-00613-w

    Article  PubMed  PubMed Central  Google Scholar 

  41. Amin MB, Greene FL, Edge SB et al (2017) The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin 67:93–99. https://doi.org/10.3322/caac.21388

  42. Turkbey B, Rosenkrantz AB, Haider MA et al (2019) Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol 76:340–351. https://doi.org/10.1016/j.eururo.2019.02.033

    Article  PubMed  Google Scholar 

  43. Scialpi M, Martorana E, Scialpi P et al (2021) MRI apparent diffusion coefficient (ADC): a biomarker for prostate cancer after radiation therapy. Turk J Urol 47:448–451. https://doi.org/10.5152/tud.2021.21274

    Article  PubMed  PubMed Central  Google Scholar 

  44. Isaksson LJ, Repetto M, Summers PE et al (2023) High-performance prediction models for prostate cancer radiomics. Inform Med Unlocked 101161. https://doi.org/10.1016/j.imu.2023.101161

  45. Ahdoot M, Wilbur AR, Reese SE et al (2020) MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis. N Engl J Med 382:917–928. https://doi.org/10.1056/NEJMoa1910038

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen M, Zhang Q, Zhang C et al (2019) Combination of 68Ga-PSMA PET/CT and multiparametric MRI improves the detection of clinically significant prostate cancer: a lesion-by-lesion analysis. J Nucl Med 60:944–949. https://doi.org/10.2967/jnumed.118.221010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rouvière O, Puech P, Renard-Penna R et al (2019) Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol 20:100–109. https://doi.org/10.1016/S1470-2045(18)30569-2

    Article  PubMed  Google Scholar 

  48. Luzzago S, de Cobelli O, Mistretta FA et al (2021) MRI-targeted or systematic random biopsies for prostate cancer diagnosis in biopsy naïve patients: follow-up of a PRECISION trial-like retrospective cohort. Prostate Cancer Prostatic Dis 24:406–413. https://doi.org/10.1038/s41391-020-00290-4

    Article  PubMed  Google Scholar 

  49. Luzzago S, Colombo A, Mistretta FA et al (2023) Multiparametric MRI-based 5-year risk prediction model for biochemical recurrence of prostate cancer after radical prostatectomy. Radiology 309:e223349. https://doi.org/10.1148/radiol.223349

    Article  PubMed  Google Scholar 

  50. Drost F-JH, Osses D, Nieboer D et al (2020) Prostate magnetic resonance imaging, with or without magnetic resonance imaging-targeted biopsy, and systematic biopsy for detecting prostate cancer: a Cochrane systematic review and meta-analysis. Eur Urol 77:78–94. https://doi.org/10.1016/j.eururo.2019.06.023

    Article  PubMed  Google Scholar 

  51. Rehman A, El-Zaatari ZM, Han SH et al (2020) Seminal vesicle invasion combined with extraprostatic extension is associated with higher frequency of biochemical recurrence and lymph node metastasis than seminal vesicle invasion alone: Proposal for further pT3 prostate cancer subclassification. Ann Diagn Pathol 49:151611. https://doi.org/10.1016/j.anndiagpath.2020.151611

    Article  PubMed  Google Scholar 

  52. Kim W, Kim CK, Park JJ et al (2017) Evaluation of extracapsular extension in prostate cancer using qualitative and quantitative multiparametric MRI. J Magn Reson Imaging 45:1760–1770. https://doi.org/10.1002/jmri.25515

    Article  PubMed  Google Scholar 

  53. Krishna S, Lim CS, McInnes MDF et al (2018) Evaluation of MRI for diagnosis of extraprostatic extension in prostate cancer. J Magn Reson Imaging 47:176–185. https://doi.org/10.1002/jmri.25729

    Article  PubMed  Google Scholar 

  54. Park KJ, Kim M-H, Kim JK (2020) Extraprostatic tumor extension: comparison of preoperative multiparametric MRI criteria and histopathologic correlation after radical prostatectomy. Radiology 296:87–95. https://doi.org/10.1148/radiol.2020192133

    Article  PubMed  Google Scholar 

  55. Bloch BN, Genega EM, Costa DN et al (2012) Prediction of prostate cancer extracapsular extension with high spatial resolution dynamic contrast-enhanced 3-T MRI. Eur Radiol 22:2201–2210. https://doi.org/10.1007/s00330-012-2475-5

    Article  PubMed  PubMed Central  Google Scholar 

  56. Somford DM, Hamoen EH, Fütterer JJ et al (2013) The predictive value of endorectal 3 Tesla multiparametric magnetic resonance imaging for extraprostatic extension in patients with low, intermediate and high risk prostate cancer. J Urol 190:1728–1734. https://doi.org/10.1016/j.juro.2013.05.021

    Article  CAS  PubMed  Google Scholar 

  57. Matsuoka Y, Ishioka J, Tanaka H et al (2017) Impact of the Prostate Imaging Reporting and Data System, Version 2, on MRI diagnosis for extracapsular extension of prostate cancer. AJR Am J Roentgenol 209:W76–W84. https://doi.org/10.2214/AJR.16.17163

    Article  PubMed  Google Scholar 

  58. Caglic I, Kovac V, Barrett T (2019) Multiparametric MRI - local staging of prostate cancer and beyond. Radiol Oncol 53:159–170. https://doi.org/10.2478/raon-2019-0021

    Article  PubMed  PubMed Central  Google Scholar 

  59. de Rooij M, Hamoen EHJ, Witjes JA et al (2016) Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol 70:233–245. https://doi.org/10.1016/j.eururo.2015.07.029

    Article  PubMed  Google Scholar 

  60. Briganti A, Blute ML, Eastham JH et al (2009) Pelvic lymph node dissection in prostate cancer. Eur Urol 55:1251–1265. https://doi.org/10.1016/j.eururo.2009.03.012

    Article  PubMed  Google Scholar 

  61. Michael J, Neuzil K, Altun E, Bjurlin MA (2022) Current opinion on the use of magnetic resonance imaging in staging prostate cancer: a narrative review. Cancer Manag Res 14:937–951. https://doi.org/10.2147/CMAR.S283299

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rajinikanth A, Manoharan M, Soloway CT et al (2008) Trends in Gleason score: concordance between biopsy and prostatectomy over 15 years. Urology 72:177–182. https://doi.org/10.1016/j.urology.2007.10.022

    Article  PubMed  Google Scholar 

  63. Kvåle R, Møller B, Wahlqvist R et al (2009) Concordance between Gleason scores of needle biopsies and radical prostatectomy specimens: a population-based study. BJU Int 103:1647–1654. https://doi.org/10.1111/j.1464-410X.2008.08255.x

    Article  PubMed  Google Scholar 

  64. Perera M, Mirchandani R, Papa N et al (2021) PSA-based machine learning model improves prostate cancer risk stratification in a screening population. World J Urol 39:1897–1902. https://doi.org/10.1007/s00345-020-03392-9

    Article  CAS  PubMed  Google Scholar 

  65. Zhong X, Cao R, Shakeri S et al (2019) Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI. Abdom Radiol (NY) 44:2030–2039. https://doi.org/10.1007/s00261-018-1824-5

    Article  PubMed  Google Scholar 

  66. Zhang B, Lian Z, Zhong L et al (2020) Machine-learning based MRI radiomics models for early detection of radiation-induced brain injury in nasopharyngeal carcinoma. BMC Cancer 20:502. https://doi.org/10.1186/s12885-020-06957-4

    Article  PubMed  PubMed Central  Google Scholar 

  67. Filson CP, Natarajan S, Margolis DJA et al (2016) Prostate cancer detection with magnetic resonance-ultrasound fusion biopsy: the role of systematic and targeted biopsies. Cancer 122:884–892. https://doi.org/10.1002/cncr.29874

    Article  PubMed  Google Scholar 

  68. Park SY, Jung DC, Oh YT et al (2016) Prostate cancer: PI-RADS version 2 helps preoperatively predict clinically significant cancers. Radiology 280:108–116. https://doi.org/10.1148/radiol.16151133

    Article  PubMed  Google Scholar 

  69. Palisaar JR, Noldus J, Löppenberg B et al (2012) Comprehensive report on prostate cancer misclassification by 16 currently used low-risk and active surveillance criteria. BJU Int 110:E172-181. https://doi.org/10.1111/j.1464-410X.2012.10935.x

    Article  PubMed  Google Scholar 

  70. Isaksson L, Pepa M, Summers P et al (2022) Comparison of automated segmentation techniques for magnetic resonance images of the prostate. BMC Med Imaging 23(1):32. https://doi.org/10.21203/rs.3.rs-1850296/v1

  71. Isaksson LJ, Summers P, Bhalerao A et al (2022) Quality assurance for automatically generated contours with additional deep learning. Insights Imaging 13:137. https://doi.org/10.1186/s13244-022-01276-7

    Article  PubMed  PubMed Central  Google Scholar 

  72. Saha A, Twilt JJ, Bosma JS et al (2022) Artificial intelligence and radiologists at prostate cancer detection in MRI: the PI-CAI challenge (study protocol). https://doi.org/10.5281/zenodo.6522364

  73. Tolkach Y, Kristiansen G (2018) The heterogeneity of prostate cancer: a practical approach. Pathobiology 85:108–116. https://doi.org/10.1159/000477852

    Article  CAS  PubMed  Google Scholar 

  74. Jafari-Khouzani K, Paynabar K, Hajighasemi F, Rosen B (2019) Effect of region of interest size on the repeatability of quantitative brain imaging biomarkers. IEEE Trans Biomed Eng 66:864–872. https://doi.org/10.1109/TBME.2018.2860928

    Article  PubMed  Google Scholar 

  75. Jensen LJ, Kim D, Elgeti T et al (2021) Stability of radiomic features across different region of interest sizes-a CT and MR phantom study. Tomography 7:238–252. https://doi.org/10.3390/tomography7020022

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JLI is a Ph.D. student within the European School of Molecular Medicine (SEMM) in Milan, Italy. MGV was supported by a research fellowship from the Associazione Italiana per la Ricerca sul Cancro (AIRC) entitled “Radioablation ± hormonotherapy for prostate cancer oligorecurrences (RADIOSA trial): potential of imaging and biology” registered at ClinicalTrials.gov NCT03940235, approved by the Ethics Committee of IRCCS Istituto Europeo di Oncologia and Centro Cardiologico Monzino (IEO-997). GC was partially supported by a research fellowship from Accuray Inc. IEO, the European Institute of Oncology, is partially supported by the Italian Ministry of Health (with “Ricerca Corrente” and “5x1000” funds).

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mattia Zaffaroni or Maria Giulia Vincini.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Giulia Marvaso.

Conflict of interest

Division of Radiotherapy IEO received research funding from AIRC (Italian Association for Cancer Research), Fondazione IEO-CCM (Istituto Europeo di Oncologia-Centro Cardiologico Monzino) all outside the current project. BAJF received speakers fees from Roche, Bayer, Janssen, Carl Zeiss, Ipsen, Accuray, Astellas, Elekta, and IBA Astra Zeneca (all outside the current project). The remaining authors declare no conflicts of interest that are relevant to the content of this article.

Statistics and biometry

One of the authors (Sara Gandini) has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

The study complies with the principles of the Declaration of Helsinki and was approved by the Ethical Committee of IEO-European Institute of Oncology IRCSS and Cardiologic Centre Monzino IRCCS (Notification No. UID 2438).

Study subjects or cohorts overlap

None.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Giulia Marvaso and Lars Johannes Isaksson are co-first authors.

Giuseppe Petralia and Barbara Alicja Jereczek-Fossa are co-last authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 67 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marvaso, G., Isaksson, L.J., Zaffaroni, M. et al. Can we predict pathology without surgery? Weighing the added value of multiparametric MRI and whole prostate radiomics in integrative machine learning models. Eur Radiol (2024). https://doi.org/10.1007/s00330-024-10699-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00330-024-10699-3

Keywords

Navigation