Skip to main content
Log in

Comparison between ZOOMit DWI and conventional DWI in the assessment of foot and ankle infection: a prospective study

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

The study aimed to compare ZOOMit diffusion-weighted imaging (DWI) MRI with conventional DWI MRI for visualizing small bones in the foot, soft tissue abscesses, and osteomyelitis.

Materials and methods

The cohort consisted of a consecutive series of patients with potential foot and ankle infections referred for MR imaging. Patients were imaged using both conventional and ZOOMit DWI in the same setting. Blinded reads were then conducted in separate settings and independent of known clinical diagnosis by two expert radiologists. The results from the reads were compared statistically using paired t-tests and with biopsy specimen analysis, both anatomopathological and microbiological.

Results

There was improvement in fat suppression using ZOOMit sequence compared to conventional DWI (p = .001) with no significant difference in motion artifacts (p = .278). ZOOMit had a higher rate of concordance with pathology findings for osteomyelitis (72%, 31/43 cases) compared with conventional DWI (60%, 26/43 cases). ZOOMit also identified 46 additional small bones of the foot and ankle (405/596, 68.0%) than conventional DWI (359/596, 60.2%). Conventional DWI however exhibited a more negative contrast-to-noise ratio (CNR) than ZOOMit (p = 0.001).

Conclusion

ZOOMit DWI improves distal extremity proton diffusion assessment and helps visualize more bones in the foot, with less image distortion and improved fat saturation at the expense of reduced CNR. This makes it a viable option for assessing lower extremity infections.

Clinical relevance statement

This study highlights the novel utilization of ZOOMit diffusion-weighted imaging (DWI) for the assessment of lower extremity lesions compared to conventional DWI.

Key Points

Distal extremity diffusion-weighted imaging (DWI) is often limited.

ZOOMit DWI displayed improved fat suppression with less motion artifacts and better visualization of the lower extremity bones than conventional DWI.

ZOOMit shows decreased contrast-to-noise ratio than conventional DWI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACR:

American College of Radiology

ADC:

Apparent diffusion coefficient

CNR:

Contrast-to-noise ratio

DFO:

Diabetic foot osteomyelitis

DWI:

Diffusion-weighted imaging

ICC:

Intraclass observer correlation

MoCI:

Motion correct imaging

MSK:

Musculoskeletal

MT:

Metatarsal

OM:

Osteomyelitis

RESOLVE:

Readout segmentation of long variable echo-trains

SD:

Standard deviation

SNR:

Signal-to-noise ratio

SPAIR:

Spectral adiabatic inversion recovery fat saturation

T1W:

T-1 weighted

T2W:

T-2 weighted

References

  1. Sia IG, Berbari EF (2006) Infection and musculoskeletal conditions: osteomyelitis. Best Pract Res Clin Rheumatol. 20(6):1065–81. https://doi.org/10.1016/j.berh.2006.08.014

    Article  PubMed  Google Scholar 

  2. Kremers HM, Nwojo ME, Ransom JE, Wood-Wentz CM, Melton LJ 3rd, Huddleston PM 3rd (2015) Trends in the epidemiology of osteomyelitis: a population-based study, 1969 to 2009. J Bone Joint Surg Am. 97(10):837–45. https://doi.org/10.2106/JBJS.N.01350

    Article  PubMed  PubMed Central  Google Scholar 

  3. Geraghty T, LaPorta G (2019) Current health and economic burden of chronic diabetic osteomyelitis. Expert Rev Pharmacoecon Outcomes Res. 19(3):279–286. https://doi.org/10.1080/14737167.2019.1567337

    Article  PubMed  Google Scholar 

  4. Rice JB, Desai U, Cummings AK, Birnbaum HG, Skornicki M, Parsons NB (2014) Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care. 37(3):651–8. https://doi.org/10.2337/dc13-2176

    Article  PubMed  Google Scholar 

  5. Lee YJ, Sadigh S, Mankad K, Kapse N, Rajeswaran G (2016) The imaging of osteomyelitis. Quant Imaging Med Surg. 6(2):184–98. https://doi.org/10.21037/qims.2016.04.01

    Article  PubMed  PubMed Central  Google Scholar 

  6. Luchs JS, Hines J, Katz DS, Athanasian EA (2002) MR imaging of squamous cell carcinoma complicating chronic osteomyelitis of the femur. AJR Am J Roentgenol. 178(2):512–3. https://doi.org/10.2214/ajr.178.2.1780512

    Article  PubMed  Google Scholar 

  7. Bauer T, David T, Rimareix F, Lortat-Jacob A (2007) Ulcere de Marjolin sur osteite chronique: diagnostic et resultats du traitement: 7 cas. [Marjolin’s ulcer in chronic osteomyelitis: seven cases and a review of the literature]. Rev Chir Orthop Reparatrice Appar Mot. 93(1):63–71. https://doi.org/10.1016/s0035-1040(07)90205-6

    Article  CAS  PubMed  Google Scholar 

  8. Expert Panel on Musculoskeletal I, Beaman FD, von Herrmann PF et al (2017) ACR Appropriateness Criteria((R)) suspected osteomyelitis, septic arthritis, or soft tissue infection (excluding spine and diabetic foot). J Am Coll Radiol. 14(5S):S326–S337. https://doi.org/10.1016/j.jacr.2017.02.008

    Article  Google Scholar 

  9. Harish S, Chiavaras MM, Kotnis N, Rebello R (2011) MR imaging of skeletal soft tissue infection: utility of diffusion-weighted imaging in detecting abscess formation. Skeletal Radiol. 40(3):285–94. https://doi.org/10.1007/s00256-010-0986-1

    Article  PubMed  Google Scholar 

  10. Kim Y, Lee SK, Kim JY, Kim JH (2023) Pitfalls of diffusion-weighted imaging: clinical utility of T2 shine-through and T2 black-out for musculoskeletal diseases. Diagnostics (Basel) 13(9). https://doi.org/10.3390/diagnostics13091647

  11. Towers JD (1997) The use of intravenous contrast in MRI of extremity infection. Semin Ultrasound CT MR. 18(4):269–75. https://doi.org/10.1016/s0887-2171(97)80017-0

    Article  CAS  PubMed  Google Scholar 

  12. Chun CW, Jung JY, Baik JS, Jee WH, Kim SK, Shin SH (2018) Detection of soft-tissue abscess: comparison of diffusion-weighted imaging to contrast-enhanced MRI. J Magn Reson Imaging. 47(1):60–68. https://doi.org/10.1002/jmri.25743

    Article  PubMed  Google Scholar 

  13. Kumar Y, Khaleel M, Boothe E, Awdeh H, Wadhwa V, Chhabra A (2017) Role of diffusion weighted imaging in musculoskeletal infections: current perspectives. Eur Radiol. 27(1):414–423. https://doi.org/10.1007/s00330-016-4372-9

    Article  PubMed  Google Scholar 

  14. Bhojwani N, Szpakowski P, Partovi S et al (2015) Diffusion-weighted imaging in musculoskeletal radiology-clinical applications and future directions. Quant Imaging Med Surg. 5(5):740–53. https://doi.org/10.3978/j.issn.2223-4292.2015.07.07

    Article  PubMed  PubMed Central  Google Scholar 

  15. Spinnato P, Patel DB, Di Carlo M et al (2022) Imaging of musculoskeletal soft-tissue infections in clinical practice: a comprehensive updated review. Microorganisms 10(12). https://doi.org/10.3390/microorganisms10122329

  16. Salastekar N, Su A, Rowe JS, Somasundaram A, Wong PK, Hanna TN (2023) Imaging of soft tissue infections. Radiol Clin North Am. 61(1):151–166. https://doi.org/10.1016/j.rcl.2022.08.003

    Article  PubMed  Google Scholar 

  17. Zaitsev M, Maclaren J, Herbst M (2015) Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging. 42(4):887–901. https://doi.org/10.1002/jmri.24850

    Article  PubMed  PubMed Central  Google Scholar 

  18. Van de Walle R, Lemahieu I, Achten E (1997) Magnetic resonance imaging and the reduction of motion artifacts: review of the principles. Technol Health Care. 5(6):419–35

    Article  PubMed  Google Scholar 

  19. Wood ML, Henkelman RM (1985) MR image artifacts from periodic motion. Med Phys. 12(2):143–51. https://doi.org/10.1118/1.595782

    Article  CAS  PubMed  Google Scholar 

  20. Liu W, Liu H, Xie S et al (2022) Comparing the clinical utility of single-shot, readout-segmented and zoomit echo-planar imaging in diffusion-weighted imaging of the kidney at 3 T. Sci Rep. 12(1):12389. https://doi.org/10.1038/s41598-022-16670-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guirguis M, Sharan G, Wang J, Chhabra A (2022) Diffusion-weighted MR imaging of musculoskeletal tissues: incremental role over conventional MR imaging in bone, soft tissue, and nerve lesions. BJR Open. 4(1):20210077. https://doi.org/10.1259/bjro.20210077

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kruk KA, Dietrich TJ, Wildermuth S et al (2022) Diffusion-weighted imaging distinguishes between osteomyelitis, bone marrow edema, and healthy bone on forefoot magnetic resonance imaging. J Magn Reson Imaging. 56(5):1571–1579. https://doi.org/10.1002/jmri.28091

    Article  PubMed  Google Scholar 

  23. Eren MA, Karakas E, Torun AN, Sabuncu T (2019) The clinical value of diffusion-weighted magnetic resonance imaging in diabetic foot infection. J Am Podiatr Med Assoc. 109(4):277–281. https://doi.org/10.7547/17-066

    Article  PubMed  Google Scholar 

  24. Cicchetti D (1994) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instrument in psychology. Psychol Assess. 6:284–290. https://doi.org/10.1037/1040-3590.6.4.284

    Article  Google Scholar 

  25. Khoo MM, Tyler PA, Saifuddin A, Padhani AR (2011) Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol. 40(6):665–81. https://doi.org/10.1007/s00256-011-1106-6

    Article  PubMed  Google Scholar 

  26. Schaefer PW, Copen WA, Lev MH, Gonzalez RG (2006) Diffusion-weighted imaging in acute stroke. Magn Reson Imaging Clin N Am. 14(2):141–68. https://doi.org/10.1016/j.mric.2006.06.005

    Article  PubMed  Google Scholar 

  27. Baur A, Stäbler A, Brüning R et al (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 207(2):349–56. https://doi.org/10.1148/radiology.207.2.9577479

    Article  CAS  PubMed  Google Scholar 

  28. Chan JH, Peh WC, Tsui EY et al (2002) Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol. 75(891):207–14. https://doi.org/10.1259/bjr.75.891.750207

    Article  CAS  PubMed  Google Scholar 

  29. Weaver JS, Omar IM, Mar WA et al (2022) Magnetic resonance imaging of musculoskeletal infections. Pol J Radiol. 87:e141–e162. https://doi.org/10.5114/pjr.2022.113825

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dallaudière B, Lecouvet F, Vande Berg B et al (2015) Diffusion-weighted MR imaging in musculoskeletal diseases: current concepts. Diagn Interv Imaging. 96(4):327–40. https://doi.org/10.1016/j.diii.2014.10.008

    Article  PubMed  Google Scholar 

  31. Chaturvedi A (2021) Pediatric skeletal diffusion-weighted magnetic resonance imaging: part 1 - technical considerations and optimization strategies. Pediatr Radiol. 51(9):1562–1574. https://doi.org/10.1007/s00247-021-04975-3

    Article  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avneesh Chhabra.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Avneesh Chhabra, MD, MBA, FACR.

Conflict of interest

The authors of this manuscript declare relationships with the following companies:

Avneesh Chhabra: Consultant: ICON Medical and TREACE Medical Concepts Inc., Book Royalties: Jaypee, Wolters, Speaker: Siemens, Medical advisor: Image Biopsy Lab Inc., Research grant: Image biopsy Lab Inc.

Avneesh Chhabra is a Deputy Editor in European Radiology. He has not taken part in the review or selection process of this article.

The other authors declare no conflict of interest for this work.

Statistics and biometry

One of the authors, Dr. Yin Xi, PhD, has significant statistical expertise.

Informed consent

Written informed consent was obtained from all participants.

Ethical approval

Institutional Review Board approval of UT Southwestern was obtained.

Study subjects or cohorts overlap

None.

Methodology

• prospective

• observational

• performed at one institution

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, S., Gowda, P., Silva, F.D. et al. Comparison between ZOOMit DWI and conventional DWI in the assessment of foot and ankle infection: a prospective study. Eur Radiol 34, 3483–3492 (2024). https://doi.org/10.1007/s00330-023-10315-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-10315-w

Keywords

Navigation