Skip to main content
Log in

Intravoxel incoherent motion diffusion weighted imaging for preoperative evaluation of liver regeneration after hepatectomy in hepatocellular carcinoma

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To explore whether intravoxel incoherent motion (IVIM) parameters could evaluate liver regeneration preoperatively.

Methods

A total of 175 HCC patients were initially recruited. The apparent diffusion coefficient, true diffusion coefficient (D), pseudodiffusion coefficient (D*), pseudodiffusion fraction (f), diffusion distribution coefficient, and diffusion heterogeneity index (Alpha) were measured by two independent radiologists. Spearman’s correlation test was used to assess correlations between IVIM parameters and the regeneration index (RI), calculated as 100% × (the volume of the postoperative remnant liver − the volume of the preoperative remnant liver) / the volume of the preoperative remnant liver. Multivariate linear regression analyses were used to identify the factors for RI.

Results

Finally, 54 HCC patients (45 men and 9 women, mean age 51.26 ± 10.41 years) were retrospectively analyzed. The intraclass correlation coefficient ranged from 0.842 to 0.918. In all patients, fibrosis stage was reclassified as F0–1 (n = 10), F2–3 (n = 26), and F4 (n = 18) using the METAVIR system. Spearman correlation test showed D* (r = 0.303, p = 0.026) was associated with RI; however, multivariate analysis showed that only D value was a significant predictor (< 0.05) of RI. D and D*showed moderate correlations with fibrosis stage (r = −0.361, = 0.007; r = −0.457, p = 0.001). Fibrosis stage showed a negative correlation with RI (r = −0.263, = 0.015). In the 29 patients who underwent minor hepatectomy, only the D value showed a positive association (< 0.05) with RI, and a negative correlation with fibrosis stage (r = −0.360, = 0.018). However, in the 25 patients who underwent major hepatectomy, no IVIM parameters were associated with RI (p > 0.05).

Conclusions

The D and D* values, especially the D value, may be reliable preoperative predictors of liver regeneration.

Key Points

• The D and D* values, especially the D value, derived from IVIM diffusion-weighted imaging may be useful markers for the preoperative prediction of liver regeneration in patients with HCC.

• The D and D* values derived from IVIM diffusion-weighted imaging show significant negative correlations with fibrosis, an important predictor of liver regeneration.

• No IVIM parameters were associated with liver regeneration in patients who underwent major hepatectomy, but the D value was a significant predictor of liver regeneration in patients who underwent minor hepatectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

ALB:

Albumin

Alpha:

Diffusion heterogeneity index

CT:

Computed tomography

D* :

Pseudodiffusion coefficient

D:

True diffusion coefficient

DDC:

Diffusion distribution coefficient

f :

Pseudodiffusion fraction

HCC:

Hepatocellular carcinoma

ICC:

Intraclass correlation coefficient

IVIM:

Intravoxel incoherent motion

LAVA:

Liver acceleration volume acquisition

LR:

Liver regeneration

LVpost:

The volume of the postoperative remnant liver

LVpre:

The volume of the preoperative remnant liver

MRE:

Magnetic resonance elastography

NEX:

Number of excitations

PHRR:

The parenchymal hepatic resection rate

RI:

Regeneration index

SWE:

Shear wave elastography

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  2. Park JW, Chen M, Colombo M et al (2015) Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver Int 35(9):2155–66

    PubMed  PubMed Central  Google Scholar 

  3. Inoue Y, Fujii K, Ishii M et al (2019) Volumetric and functional regeneration of remnant liver after hepatectomy. J Gastrointest Surg 23(5):914–921

    PubMed  Google Scholar 

  4. Cieslak KP, Runge JH, Heger M, Stoker J, Bennink RJ, van Gulik TM (2014) New perspectives in the assessment of future remnant liver. Dig Surg 31(4–5):255–68

    PubMed  Google Scholar 

  5. Fukushima K, Fukumoto T, Kuramitsu K et al (2014) Assessment of ISGLS definition of posthepatectomy liver failure and its effect on outcome in patients with hepatocellular carcinoma. J Gastrointest Surg 18(4):729–36

    PubMed  Google Scholar 

  6. Marrone G, Shah VH, Gracia-Sancho J (2016) Sinusoidal communication in liver fibrosis and regeneration. J Hepatol 65(3):608–17

    PubMed  PubMed Central  Google Scholar 

  7. Hori T, Uemoto S, Chen F et al (2014) Oxidative stress and extracellular matrices after hepatectomy and liver transplantation in rats. World J Hepatol 6(2):72–84

    PubMed  PubMed Central  Google Scholar 

  8. Ramos Rubio E, LladoGarriga L (2010) Usefulness of pre-surgical biopsy in selecting patients with hepatocellular carcinoma for liver transplant. Cir Esp 87:133–138

    PubMed  Google Scholar 

  9. Jang S, Lee JM, Lee DH et al (2017) Value of MR elastography for the preoperative estimation of liver regeneration capacity in patients with hepatocellular carcinoma. J Magn Reson Imaging 45:1627–1636

    PubMed  Google Scholar 

  10. Gao Y, Zheng J, Liang P et al (2018) Liver fibrosis with two-dimensional US shear-wave elastography in participants with chronic hepatitis B: a prospective multicenter study. Radiology 289:407–415

    PubMed  Google Scholar 

  11. Li YT, Cercueil JP, Yuan J, Chen W, Loffroy R, Wáng YX (2017) Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: a comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. Quant Imaging Med Surg 7:59–78

    PubMed  PubMed Central  Google Scholar 

  12. Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging–pilot study. Radiology 249:891–899

    PubMed  Google Scholar 

  13. Zhang Y, Jin N, Deng J et al (2013) Intra-voxel incoherent motion MRI in rodent model of diethylnitrosamine-induced liver fibrosis. Magn Reson Imaging 31:1017–1021

    PubMed  PubMed Central  Google Scholar 

  14. Zhang T, Wei Y, He X et al (2021) Prediction of remnant liver regeneration after right hepatectomy in patients with hepatocellular carcinoma using preoperative CT texture analysis and clinical features. Contrast Media Mol Imaging 2021:5572470

    PubMed  PubMed Central  Google Scholar 

  15. Fruscione M, Pickens R, Baker EH et al (2019) Robotic-assisted versus laparoscopic major liver resection: analysis of outcomes from a single center. HPB (Oxford) 21:906–911

    PubMed  Google Scholar 

  16. Kele PG, de Boer M, van der Jagt EJ et al (2012) Early hepatic regeneration index and completeness of regeneration at 6 months after partial hepatectomy. Br J Surg 99:1113–1119

    CAS  PubMed  Google Scholar 

  17. Pulitano C, Crawford M, Joseph D et al (2014) Preoperative assessment of postoperative liver function: the importance of residual liver volume. J Surg Oncol 110:445–450

    PubMed  Google Scholar 

  18. Haimerl M, Schlabeck M, Verloh N et al (2016) Volume-assisted estimation of liver function based on Gd- EOB-DTPA-enhanced MR relaxometry. Eur Radiol 26:1125–1133

    PubMed  Google Scholar 

  19. Park J, Kim JH, Kim JE et al (2020) Prediction of liver regeneration in recipients after living-donor liver transplantation in using preoperative CT texture analysis and clinical features. Abdom Radiol (NY) 45:3763–3774

    PubMed  Google Scholar 

  20. Park YS, Park SH, Lee SS et al (2011) Biopsy-proven nonsteatotic liver in adults: estimation of reference range for difference in attenuation between the liver and the spleen at nonenhanced CT. Radiology 258:760–766

    PubMed  Google Scholar 

  21. Bedossa P, Poynard T (1996) An algorithm for the grading of activity in chronic hepatitis C The METAVIR cooperative study group. Hepatology 24:289–293

    CAS  PubMed  Google Scholar 

  22. Scheuer PJ (1991) Classification of chronic viral hepatitis: a need for reassessment. J Hepatol 13:372–374

    CAS  PubMed  Google Scholar 

  23. Zhang Y, Kuang S, Shan Q et al (2019) Can IVIM help predict HCC recurrence after hepatectomy. Eur Radiol 29:5791–5803

    PubMed  Google Scholar 

  24. Shao S, Shan Q, Zheng N, Wang B, Wang J (2019) Role of intravoxel incoherent motion in discriminating hepatitis B virus-related intrahepatic mass-forming cholangiocarcinoma from hepatocellular carcinoma based on liver imaging reporting and data system v2018. Cancer Biother Radiopharm 34:511–518

    PubMed  Google Scholar 

  25. Le Bihan D, Ichikawa S, Motosugi U (2017) Diffusion and intravoxel incoherent motion MR imaging-based virtual elastography: a hypothesis-generating study in the liver. Radiology 285:609–619

    PubMed  Google Scholar 

  26. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    PubMed  Google Scholar 

  27. Bennett KM, Schmainda KM, Bennett RT, Rowe DB, Lu H, Hyde JS (2003) Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 50:727–734

    PubMed  Google Scholar 

  28. Lai V, Lee VH, Lam KO, Sze HC, Chan Q, Khong PL (2015) Intravoxel water diffusion heterogeneity MR imaging of nasopharyngeal carcinoma using stretched exponential diffusion model. Eur Radiol 25:1708–1713

    PubMed  Google Scholar 

  29. Seo N, Chung YE, Park YN, Kim E, Hwang J, Kim MJ (2018) Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI. Eur Radiol 28:2812–2822

    PubMed  Google Scholar 

  30. Slinker BK, Glantz SA (1985) Multiple regression for physiological data analysis: the problem of multicollinearity. Am J Physiol 249:R1-12

    CAS  PubMed  Google Scholar 

  31. Huebert RC, Shah VH (2014) Sinusoidal endothelial cells direct traffic at the intersection of regeneration and fibrosis. Hepatology 60:754–756

    PubMed  Google Scholar 

  32. Wiemann SU, Satyanarayana A, Tsahuridu M et al (2002) Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J 16:935–942

    CAS  PubMed  Google Scholar 

  33. Ding BS, Cao Z, Lis R et al (2014) Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505:97–102

    PubMed  Google Scholar 

  34. Tosun M, Onal T, Uslu H, Alparslan B, ÇetinAkhan S (2020) Intravoxel incoherent motion imaging for diagnosing and staging the liver fibrosis and inflammation. Abdom Radiol (NY) 45:15–23

    PubMed  Google Scholar 

  35. Chow AM, Gao DS, Fan SJ et al (2012) Liver fibrosis: an intravoxel incoherent motion (IVIM) study. J Magn Reson Imaging 36:159–167

    PubMed  Google Scholar 

  36. Moreno AH, Burchell AR, Rousselot LM, Panke WF, Slafsky F, Burke JH (1967) Portal blood flow in cirrhosis of the liver. J Clin Invest 46:436–445

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ren H, Liu Y, Lu J et al (2021) Evaluating the clinical value of MRI multi-model diffusion-weighted imaging on liver fibrosis in chronic hepatitis B patients. Abdom Radiol (NY) 46:1552–1561

    PubMed  Google Scholar 

  38. Hu G, Chan Q, Quan X et al (2015) Intravoxel incoherent motion MRI evaluation for the staging of liver fibrosis in a rat model. J Magn Reson Imaging 42:331–339

    PubMed  Google Scholar 

  39. Zipprich A, Steudel N, Behrmann C et al (2003) Functional significance of hepatic arterial flow reserve in patients with cirrhosis. Hepatology 37:385–392

    PubMed  Google Scholar 

  40. Bai Y, Lin Y, Tian J et al (2016) Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging. Radiology 278:496–504

    PubMed  Google Scholar 

  41. Park JH, Seo N, Chung YE et al (2021) Noninvasive evaluation of liver fibrosis: comparison of the stretched exponential diffusion-weighted model to other diffusion-weighted MRI models and transient elastography. Eur Radiol 31:4813–4823

    PubMed  Google Scholar 

  42. Anderson SW, Barry B, Soto J et al (2014) Characterizing non-Gaussian, high b-value diffusion in liver fibrosis: Stretched exponential and diffusional kurtosis modeling. J Magn Reson Imaging 39:827–834

    PubMed  Google Scholar 

  43. Standish RA, Cholongitas E, Dhillon A, Burroughs AK, Dhillon AP (2006) An appraisal of the histopathological assessment of liver fibrosis. Gut 55:569–578

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Biagini G, Ballardini G (1989) Liver fibrosis and extracellular matrix. J Hepatol 8:115–124

    CAS  PubMed  Google Scholar 

  45. Sandrasegaran K, Territo P, Elkady RM et al (2018) Does intravoxel incoherent motion reliably stage hepatic fibrosis, steatosis, and inflammation? Abdom Radiol (NY) 43:600–606

    PubMed  Google Scholar 

  46. Manning P, Murphy P, Wang K et al (2017) Liver histology and diffusion-weighted MRI in children with nonalcoholic fatty liver disease: a MAGNET study. J Magn Reson Imaging 46:1149–1158

    PubMed  PubMed Central  Google Scholar 

  47. Lefebvre T, Hébert M, Bilodeau L et al (2021) Intravoxel incoherent motion diffusion-weighted MRI for the characterization of inflammation in chronic liver disease. Eur Radiol 31:1347–1358

    PubMed  Google Scholar 

  48. Abdalla EK, Denys A, Chevalier P, Nemr RA, Vauthey JN (2004) Total and segmental liver volume variations: implications for liver surgery. Surgery 135:404–410

    PubMed  Google Scholar 

  49. Kim JE, Kim JH, Park SJ, Choi SY, Yi NJ, Han JK (2019) Prediction of liver remnant regeneration after living donor liver transplantation using preoperative CT texture analysis. Abdom Radiol (NY) 44:1785–1794

    PubMed  Google Scholar 

  50. Meier M, Andersen KJ, Knudsen AR, Nyengaard JR, Hamilton-Dutoit S, Mortensen FV (2016) Liver regeneration is dependent on the extent of hepatectomy. J Surg Res 205:76–84

    PubMed  Google Scholar 

  51. Gruttadauria S, Parikh V, Pagano D et al (2012) Early regeneration of the remnant liver volume after right hepatectomy for living donation: a multiple regression analysis. Liver Transpl 18:907–913

    PubMed  Google Scholar 

  52. Ma HY, Dong L, Quan SZ, Li RY, Wang XR (2021) Comparison of four markers of hepatic fibrosis and hepatic function indices in patients with liver cirrhosis and hepatoma. Ann Palliat Med 10:4108–4121

    PubMed  Google Scholar 

  53. Cheemerla S, Balakrishnan M (2021) Global epidemiology of chronic liver disease. Clin Liver Dis (Hoboken) 17:365–370

    PubMed  Google Scholar 

  54. Nadalin S, Testa G, Malagó M et al (2004) Volumetric and functional recovery of the liver after right hepatectomy for living donation. Liver Transpl 10:1024–1029

    PubMed  Google Scholar 

  55. Yokoi H, Isaji S, Yamagiwa K et al (2005) Donor outcome and liver regeneration after right-lobe graft donation. Transpl Int 18:915–922

    PubMed  Google Scholar 

  56. Gong WF, Zhong JH, Lu Z et al (2019) Evaluation of liver regeneration and post-hepatectomy liver failure after hemihepatectomy in patients with hepatocellular carcinoma. Biosci Rep 39. https://doi.org/10.1042/BSR20190088

  57. Haga J, Shimazu M, Wakabayashi G et al (2008) Liver regeneration in donors and adult recipients after living donor liver transplantation. Liver Transpl 14:1718–1724

    PubMed  Google Scholar 

Download references

Funding

This study has received funding by China Postdoctoral Science Foundation (2021M692289), Science and Technology Support Program of Sichuan Province (Grant number 2021YFS0144, Grant number 2021YFS0021), and Post-Doctor Research Project, West China Hospital, Sichuan University (Grant number 2020HXBH130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Wei or Bin Song.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Bin Song.

Conflict of interest

One of the authors (Lisha Nie) is an employee of GE Healthcare. The remaining authors declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• observational study

• performed at one institution

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 412 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhang, T., Che, F. et al. Intravoxel incoherent motion diffusion weighted imaging for preoperative evaluation of liver regeneration after hepatectomy in hepatocellular carcinoma. Eur Radiol 33, 5222–5235 (2023). https://doi.org/10.1007/s00330-023-09496-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-09496-1

Keywords

Navigation