Skip to main content

Advertisement

Log in

A deep-learning model for identifying fresh vertebral compression fractures on digital radiography

  • Imaging Informatics and Artificial Intelligence
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To develop a deep-learning (DL) model for identifying fresh VCFs from digital radiography (DR), with magnetic resonance imaging (MRI) as the reference standard.

Methods

Patients with lumbar VCFs were retrospectively enrolled from January 2011 to May 2020. All patients underwent DR and MRI scanning. VCFs were categorized as fresh or old according to MRI results, and the VCF grade and type were assessed. The raw DR data were sent to InferScholar Center for annotation. A DL-based prediction model was built, and its diagnostic performance was evaluated. The DeLong test was applied to assess differences in ROC curves between different models.

Results

A total of 1877 VCFs in 1099 patients were included in our study and randomly divided into development (n = 824 patients) and test (n = 275 patients) datasets. The ensemble model identified fresh and old VCFs, reaching an AUC of 0.80 (95% confidence interval [CI], 0.77–0.83), an accuracy of 74% (95% CI, 72–77%), a sensitivity of 80% (95% CI, 77–83%), and a specificity of 68% (95% CI, 63–72%). Lateral (AUC, 0.83) views exhibited better performance than anteroposterior views (AUC, 0.77), and the best performance among respective subgroupings was obtained for grade 3 (AUC, 0.89) and crush-type (AUC, 0.87) subgroups.

Conclusion

The proposed DL model achieved adequate performance in identifying fresh VCFs from DR.

Key Points

The ensemble deep-learning model identified fresh VCFs from DR, reaching an AUC of 0.80, an accuracy of 74%, a sensitivity of 80%, and a specificity of 68% with the reference standard of MRI.

The lateral views (AUC, 0.83) exhibited better performance than anteroposterior views (AUC, 0.77).

The grade 3 (AUC, 0.89) and crush-type (AUC, 0.87) subgroups showed the best performance among their respective subgroupings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

AP:

Anteroposterior

AUC:

Area under the curve

BMEs:

Bone marrow edemas

CNN:

Convolutional neural network

DL:

Deep-learning

DR:

Digital radiography

LAT:

Lateral

MRI:

Magnetic resonance imaging

ROC:

Receiver operating characteristic

VCFs:

Vertebral compression fractures

References

  1. Beall DP, Chambers MR, Thomas S et al (2019) Prospective and multicenter evaluation of outcomes for quality of life and activities of daily living for balloon kyphoplasty in the treatment of vertebral compression fractures: the EVOLVE trial. Neurosurgery 84(1):169–178. https://doi.org/10.1093/neuros/nyy017

    Article  PubMed  Google Scholar 

  2. Musbahi O, Ali AM, Hassany H, Mobasheri R (2018) Vertebral compression fractures. Br J Hosp Med 79(1):36–40. https://doi.org/10.12968/hmed.2018.79.1.36

  3. Goldstein CL, Chutkan NB, Choma TJ, Orr RD (2015) Management of the elderly with vertebral compression fractures. Neurosurgery 77(Suppl 4):S33–S45. https://doi.org/10.1227/NEU.0000000000000947

    Article  PubMed  Google Scholar 

  4. Petritsch B, Kosmala A, Weng AM et al (2017) Vertebral compression fractures: third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology 284(1):161–168. https://doi.org/10.1148/radiol.2017162165

    Article  PubMed  Google Scholar 

  5. Löffler MT, Jacob A, Valentinitsch A et al (2019) Improved prediction of incident vertebral fractures using opportunistic qct compared to dxa. Eur Radiol 29(9):4980–4989. https://doi.org/10.1007/s00330-019-06018-w

    Article  PubMed  PubMed Central  Google Scholar 

  6. Diekhoff T, Engelhard N, Fuchs M et al (2019) Single-source dual-energy computed tomography for the assessment of bone marrow oedema in vertebral compression fractures: a prospective diagnostic accuracy study. Eur Radiol 29(1):31–39. https://doi.org/10.1007/s00330-018-5568-y

    Article  PubMed  Google Scholar 

  7. Clark W, Bird P, Gonski P et al (2016) Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 388(10052):1408–1416. https://doi.org/10.1016/S0140-6736(16)31341-1

    Article  PubMed  Google Scholar 

  8. Kaup M, Wichmann JL, Scholtz JE et al (2016) Dual-energy CT–based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology 280(2):510–519. https://doi.org/10.1148/radiol.2016150472

    Article  PubMed  Google Scholar 

  9. Frellesen C, Azadegan M, Martin SS et al (2018) Dual-energy computed tomography-based display of bone marrow edema in incidental vertebral compression fractures: diagnostic accuracy and characterization in oncological patients undergoing routine staging computed tomography. Invest Radiol 53(7):409–416. https://doi.org/10.1097/RLI.0000000000000458

    Article  PubMed  Google Scholar 

  10. Bierry G, Venkatasamy A, Kremer S, Dosch JC, Dietemann JL (2014) Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skeletal Radiol 43(4):485–492. https://doi.org/10.1007/s00256-013-1812-3

    Article  PubMed  Google Scholar 

  11. Zhao QM, Gu XF, Liu ZT, Cheng L (2016) The value of radionuclide bone imaging in defining fresh fractures among osteoporotic vertebral compression fractures. J Craniofac Surg 27(3):745–748. https://doi.org/10.1097/SCS.0000000000002594

    Article  PubMed  Google Scholar 

  12. Milby AH, Ughwanogho E, Hebela NM, Smith HE (2018) Vertebral compression fractures. In: Pignolo R, Ahn J (eds) Fractures in the elderly. Humana Press, Cham, p 195–206. https://doi.org/10.1007/978-3-319-72228-3_11

  13. McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577(7788):89–94. https://doi.org/10.1038/s41586-019-1799-6

    Article  CAS  PubMed  Google Scholar 

  14. Zheng Q, Shellikeri S, Huang H, Hwang M, Sze RW (2020) Deep learning measurement of leg length discrepancy in children based on radiographs. Radiology 296(1):152–158. https://doi.org/10.1148/radiol.2020192003

    Article  PubMed  Google Scholar 

  15. Zhang R, Tie X, Qi Z et al (2021) Diagnosis of coronavirus disease 2019 pneumonia by using chest radiography: value of artificial intelligence. Radiology 298(2):E88–E97. https://doi.org/10.1148/radiol.2020202944

    Article  PubMed  Google Scholar 

  16. Wehbe R, Sheng J, Dutta S et al (2020) DeepCOVID-XR: an artificial intelligence algorithm to detect COVID-19 on chest radiographs trained and tested on a large US clinical dataset. Radiology 299(1):E167–E176. https://doi.org/10.1148/radiol.2020203511

    Article  PubMed  Google Scholar 

  17. Rauschecker AM, Rudie JD, Xie L et al (2020) Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI. Radiology 295(3):626–637. https://doi.org/10.1148/radiol.2020190283

    Article  PubMed  Google Scholar 

  18. Adela A, Rangarajan L (2020) Computational techniques to segment and classify lumbar compression fractures. Radiol Med 125(6):551–560. https://doi.org/10.1007/s11547-020-01145-7

    Article  Google Scholar 

  19. Al Arif S, Knapp K, Slabaugh G (2018) Fully automatic cervical vertebrae segmentation framework for X-ray images. Comput Methods Programs Biomed 157:95–111. https://doi.org/10.1016/j.cmpb.2018.01.006

    Article  PubMed  Google Scholar 

  20. Burns JE, Yao J, Summers RM (2017) Vertebral body compression fractures and bone density: automated detection and classification on CT images. Radiology 284(3):788–797. https://doi.org/10.1148/radiol.2017162100

    Article  PubMed  Google Scholar 

  21. Zhao S, Wu X, Chen B, Li S (2021) Automatic vertebrae recognition from arbitrary spine MRI images by a category-Consistent self-calibration detection framework. Med Image Anal 67:101826. https://doi.org/10.1016/j.media.2020.101826

    Article  PubMed  Google Scholar 

  22. Spiegl UJ, Beisse R, Hauck S, Bühren V (2009) Value of MRI imaging prior to a kyphoplasty for osteoporotic insufficiency fractures. Eur Spine J 18(9):1287–1292. https://doi.org/10.1007/s00586-009-1045-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Neuhaus V, Lennartz S, Abdullayev N et al (2018) Bone marrow edema in traumatic vertebral compression fractures: diagnostic accuracy of dual-layer detector CT using calcium suppressed images. Eur J Radiol 105:216–220. https://doi.org/10.1016/j.ejrad.2018.06.009

    Article  PubMed  Google Scholar 

  24. Genant HK, Jergas M (2003) Assessment of prevalent and incident vertebral fractures in osteoporosis research. Osteoporos Int 14(Suppl 3):S43-55. https://doi.org/10.1007/s00198-002-1348-1

    Article  PubMed  Google Scholar 

  25. Dewar C (2015) Diagnosis and treatment of vertebral compression fractures. Radiol Technol 86(3):301–320

    PubMed  Google Scholar 

  26. Selvaraju RR, Cogswell M, Das A, Parikh D, Batra D (2020) Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vision 128(2):336–359. https://doi.org/10.1007/s11263-019-01228-7

    Article  Google Scholar 

  27. Domiciano DS, Figueiredo CP, Lopes JB et al (2013) Vertebral fracture assessment by dual X-ray absorptiometry: a valid tool to detect vertebral fractures in community-dwelling older adults in a population-based survey. Arthritis Care Res (Hoboken) 65(5):809–815. https://doi.org/10.1002/acr.21905

    Article  CAS  Google Scholar 

  28. van der Velde R, Ozanian T, Dumitrescu B et al (2015) Performance of statistical models of shape and appearance for semiautomatic segmentations of spinal vertebrae T4–L4 on digitized vertebral fracture assessment images. Spine J 15(6):1248–1254. https://doi.org/10.1016/j.spinee.2015.02.018

    Article  PubMed  Google Scholar 

  29. Samelson EJ, Christiansen BA, Demissie S et al (2011) Reliability of vertebral fracture assessment using multidetector CT lateral scout views: the Framingham Osteoporosis Study. Osteoporos Int 22(4):1123–1131. https://doi.org/10.1007/s00198-010-1290-6

    Article  CAS  PubMed  Google Scholar 

  30. Kim YM, Demissie S, Genant HK et al (2012) Identification of prevalent vertebral fractures using CT lateral scout views: a comparison of semi-automated quantitative vertebral morphometry and radiologist semi-quantitative grading. Osteoporos Int 23(3):1007–1016. https://doi.org/10.1007/s00198-011-1774-z

    Article  CAS  PubMed  Google Scholar 

  31. Fuerst T, Wu C, Genant HK et al (2009) Evaluation of vertebral fracture assessment by dual X-ray absorptiometry in a multicenter setting. Osteoporos Int 20(7):1199–1205. https://doi.org/10.1007/s00198-008-0806-9

    Article  CAS  PubMed  Google Scholar 

  32. Grados F, Fechtenbaum J, Flipon E, Kolta S, Roux C, Fardellone P (2009) Radiographic methods for evaluating osteoporotic vertebral fractures. Joint Bone Spine 76(3):241–247. https://doi.org/10.1016/j.jbspin.2008.07.017

    Article  PubMed  Google Scholar 

  33. Genant HK, Delmas PD, Chen P et al (2007) Severity of vertebral fracture reflects deterioration of bone microarchitecture. Osteoporos Int 18(1):69–76. https://doi.org/10.1007/s00198-006-0199-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to American Journal Experts (AJE) for their assistance with language editing.

Funding

This study was supported by the Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University (2020–7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajing Guo.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dajing Guo.

Conflict of interest

The authors of this manuscript declare relationships with the following companies: Infervision.

Statistics and biometry

Infervision kindly provided statistical advice for this manuscript.

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was not required for this study because this was a retrospective study.

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• cross-sectional study/diagnostic or prognostic study/observational

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2040 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Liu, X., Li, K. et al. A deep-learning model for identifying fresh vertebral compression fractures on digital radiography. Eur Radiol 32, 1496–1505 (2022). https://doi.org/10.1007/s00330-021-08247-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-08247-4

Keywords

Navigation