Skip to main content

Advertisement

Log in

Prone position [18F]FDG PET/CT to reduce respiratory motion artefacts in the evaluation of lung nodules

  • Nuclear Medicine
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron-emission tomography/computed tomography (PET/CT) is widely used to evaluate lung nodules, although respiratory motion artefacts may occur. We investigated the value of prone position PET/CT (pPET/CT) in lung nodule evaluation compared with standard supine position PET/CT (sPET/CT).

Methods

We retrospectively reviewed 28 consecutive patients (20 men; age, 65.6 ± 12.1 years) with a lung nodule (size, 16.8 ± 5.5 mm) located below the sub-carinal level who underwent [18F]FDG PET/CT in a standard supine position and additional prone position. The maximum standardised uptake value (SUVmax), metabolic tumour volume (MTV), difference of diaphragm position between PET and CT (DDP), Dice’s similarity coefficient (DSC) and occurrence of mis-registration were analysed. The [18F]FDG uptake of 20 biopsy-confirmed (15 malignant) nodules was evaluated visually.

Results

pPET/CT yielded a significantly higher SUVmax, lower MTV and shorter DDP than with sPET/CT (p = 0.043, 0.007 and 0.021, respectively). Mis-registration occurred in 53.6% of cases in sPET/CT and in 28.6% of cases in pPET/CT (p = 0.092). Among the 15 patients with mis-registration in sPET/CT, 10 patients (66.7%) did not show mis-registration in pPET/CT. DSC was higher in pPET/CT than in sPET/CT in 18 out of 28 patients (64.3%). In visual analysis, malignant nodules exhibited a higher [18F]FDG uptake positivity than benign nodules in pPET/CT (93.3% vs. 40.0%, p = 0.032) but not in sPET/CT (80.0% vs. 40.0%, p = 0.131).

Conclusions

pPET/CT reduces respiratory motion artefact and enables more-precise measurements of PET parameters.

Key Points

• In prone position PET/CT, the decrease in the blurring effect caused by reduced respiratory motion resulted in a higher SUV max and lower MTV in lung nodules than that with supine position PET/CT.

• Prone position PET/CT was useful to interpret correctly malignant lung nodules as being positive in individual cases that had a negative result in supine position PET/CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

[18F]FDG:

2-Deoxy-2-[18F]fluoro-D-glucose

CT:

Computed tomography

DDP:

Difference of diaphragm position between PET and CT

IPF:

Idiopathic pulmonary fibrosis

MTV:

Metabolic tumour volume

PET/CT:

Positron-emission tomography/computed tomography

PET:

Positron-emission tomography

pPET/CT:

Prone position positron-emission tomography/computed tomography

SD:

Standard deviation

sPET/CT:

Supine position positron-emission tomography/computed tomography

SUVmax :

Maximum standardised uptake value

References

  1. Cronin P, Dwamena BA, Kelly AM, Bernstein SJ, Carlos RC (2008) Solitary pulmonary nodules and masses: A meta-analysis of the diagnostic utility of alternative imaging tests. Eur Radiol 18:1840–1856

    Article  PubMed  Google Scholar 

  2. Divisi D, Barone M, Bertolaccini L, Zaccagna G, Gabriele F, Crisci R (2018) Diagnostic performance of fluorine-18 fluorodeoxyglucose positron emission tomography in the management of solitary pulmonary nodule: A meta-analysis. J Thorac Dis 10:S779–s789

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jia Y, Gong W, Zhang Z et al (2019) Comparing the diagnostic value of (18)F-FDG-PET/CT versus CT for differentiating benign and malignant solitary pulmonary nodules: A meta-analysis. J Thorac Dis 11:2082–2098

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li ZZ, Huang YL, Song HJ, Wang YJ, Huang Y (2018) The value of 18F-FDG-PET/CT in the diagnosis of solitary pulmonary nodules: A meta-analysis. Medicine (Baltimore) 97:e0130

    Article  Google Scholar 

  5. Ruilong Z, Daohai X, Li G, Xiaohong W, Chunjie W, Lei T (2017) Diagnostic value of 18F-FDG-PET/CT for the evaluation of solitary pulmonary nodules: A systematic review and meta-analysis. Nucl Med Commun 38:67–75

    Article  PubMed  Google Scholar 

  6. Bueno J, Landeras L, Chung JH (2018) Updated Fleischner Society guidelines for managing incidental pulmonary nodules: Common questions and challenging scenarios. Radiographics 38:1337–1350

    Article  PubMed  Google Scholar 

  7. Osman MM, Cohade C, Nakamoto Y, Wahl RL (2003) Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging 30:603–606

    Article  PubMed  Google Scholar 

  8. Allen-Auerbach M, Yeom K, Park J, Phelps M, Czernin J (2006) Standard PET/CT of the chest during shallow breathing is inadequate for comprehensive staging of lung cancer. J Nucl Med 47:298–301

    PubMed  Google Scholar 

  9. Erdi YE, Nehmeh SA, Pan T et al (2004) The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 45:1287–1292

    PubMed  Google Scholar 

  10. Farid K, Poullias X, Alifano M et al (2015) Respiratory-gated imaging in metabolic evaluation of small solitary pulmonary nodules: 18F-FDG PET/CT and correlation with histology. Nucl Med Commun 36:722–727

    Article  CAS  PubMed  Google Scholar 

  11. Guerra L, De Ponti E, Elisei F et al (2012) Respiratory gated PET/CT in a European multicentre retrospective study: Added diagnostic value in detection and characterization of lung lesions. Eur J Nucl Med Mol Imaging 39:1381–1390

    Article  PubMed  Google Scholar 

  12. Van Der Gucht A, Serrano B, Hugonnet F, Paulmier B, Garnier N, Faraggi M (2014) Impact of a new respiratory amplitude-based gating technique in evaluation of upper abdominal PET lesions. Eur J Radiol 83:509–515

    Article  Google Scholar 

  13. Pepin A, Daouk J, Bailly P, Hapdey S, Meyer ME (2014) Management of respiratory motion in PET/computed tomography: The state of the art. Nucl Med Commun 35:113–122

    Article  PubMed  PubMed Central  Google Scholar 

  14. Walker MD, Morgan AJ, Bradley KM, McGowan DR (2020) Data driven respiratory gating outperforms device-based gating for clinical FDG PET/CT. J Nucl Med. https://doi.org/10.2967/jnumed.120.242248

  15. Büther F, Jones J, Seifert R, Stegger L, Schleyer P, Schäfers M (2020) Clinical evaluation of a data-driven respiratory gating algorithm for whole-body PET with continuous bed motion. J Nucl Med 61:1520–1527

    Article  PubMed  Google Scholar 

  16. Manna EM, Ibraheim OA, Samarkandi AH, Alotaibi WM, Elwatidy SM (2005) The effect of prone position on respiratory mechanics during spinal surgery. Middle East J Anaesthesiol 18:623–630

    PubMed  Google Scholar 

  17. Nam Y, Yoon AM, Kim YH, Yoon SH (2010) The effect on respiratory mechanics when using a Jackson surgical table in the prone position during spinal surgery. Korean J Anesthesiol 59:323–328

    Article  PubMed  PubMed Central  Google Scholar 

  18. Senay H, Sivaci R, Kokulu S, Koca B, Baki ED, Ela Y (2016) The effect of pressure-controlled ventilation and volume-controlled ventilation in prone position on pulmonary mechanics and inflammatory markers. Inflammation 39:1469–1474

    Article  PubMed  Google Scholar 

  19. Cohade C, Osman M, Marshall LN, Wahl RN (2003) PET-CT: Accuracy of PET and CT spatial registration of lung lesions. Eur J Nucl Med Mol Imaging 30:721–726

    Article  PubMed  Google Scholar 

  20. Boellaard R, Delgado-Bolton R, Oyen WJ et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur J Nucl Med Mol Imaging 42:328–354

    Article  CAS  PubMed  Google Scholar 

  21. van der Vos CS, Grootjans W, Osborne DR et al (2015) Improving the spatial alignment in PET/CT using amplitude-based respiration-gated PET and respiration-triggered CT. J Nucl Med 56:1817–1822

    Article  PubMed  Google Scholar 

  22. Hanna GG, Hounsell AR, O’Sullivan JM (2010) Geometrical analysis of radiotherapy target volume delineation: A systematic review of reported comparison methods. Clin Oncol (R Coll Radiol) 22:515–525

    Article  CAS  Google Scholar 

  23. Meirelles GS, Erdi YE, Nehmeh SA et al (2007) Deep-inspiration breath-hold PET/CT: Clinical findings with a new technique for detection and characterization of thoracic lesions. J Nucl Med 48:712–719

    Article  PubMed  Google Scholar 

  24. Kawano T, Ohtake E, Inoue T (2008) Deep-inspiration breath-hold PET/CT of lung cancer: Maximum standardized uptake value analysis of 108 patients. J Nucl Med 49:1223–1231

    Article  PubMed  Google Scholar 

  25. Frood R, McDermott G, Scarsbrook A (2018) Respiratory-gated PET/CT for pulmonary lesion characterisation-Promises and problems. Br J Radiol 91:20170640

    Article  PubMed  PubMed Central  Google Scholar 

  26. Balamoutoff N, Serrano B, Hugonnet F, Garnier N, Paulmier B, Faraggi M (2018) Added value of a single fast 20-second deep-inspiration breath-hold acquisition in FDG PET/CT in the assessment of lung nodules. Radiology 286:260–270

    Article  PubMed  Google Scholar 

  27. Torizuka T, Tanizaki Y, Kanno T et al (2009) Single 20-second acquisition of deep-inspiration breath-hold PET/CT: Clinical feasibility for lung cancer. J Nucl Med 50:1579–1584

    Article  PubMed  Google Scholar 

  28. García Vicente AM, Castrejón AS, León Martín AA, García BG, Pilkington Woll JP, Muñoz AP (2011) Value of 4-dimensional 18F-FDG PET/CT in the classification of pulmonary lesions. J Nucl Med Technol 39:91–99

    Article  PubMed  Google Scholar 

  29. García Vicente AM, Soriano Castrejón AM, Talavera Rubio MP et al (2010) (18)F-FDG PET-CT respiratory gating in characterization of pulmonary lesions: Approximation towards clinical indications. Ann Nucl Med 24:207–214

    Article  PubMed  Google Scholar 

  30. Werner MK, Parker JA, Kolodny GM, English JR, Palmer MR (2009) Respiratory gating enhances imaging of pulmonary nodules and measurement of tracer uptake in FDG PET/CT. AJR Am J Roentgenol 193:1640–1645

    Article  PubMed  Google Scholar 

  31. Aristophanous M, Yong Y, Yap JT et al (2012) Evaluating FDG uptake changes between pre and post therapy respiratory gated PET scans. Radiother Oncol 102:377–382

    Article  PubMed  Google Scholar 

  32. Grootjans W, de Geus-Oei LF, Meeuwis AP et al (2014) Amplitude-based optimal respiratory gating in positron emission tomography in patients with primary lung cancer. Eur Radiol 24:3242–3250

    Article  PubMed  Google Scholar 

  33. Huang T-C, Chou K-T, Wang Y-C, Zhang G (2014) Motion freeze for respiration motion correction in PET/CT: A preliminary investigation with lung cancer patient data. Biomed Res Int 2014:167491

  34. van Elmpt W, Hamill J, Jones J, De Ruysscher D, Lambin P, Ollers M (2011) Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours. Eur J Nucl Med Mol Imaging 38:843–855

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chang G, Chang T, Pan T, Clark JW Jr, Mawlawi OR (2010) Implementation of an automated respiratory amplitude gating technique for PET/CT: Clinical evaluation. J Nucl Med 51:16–24

    Article  PubMed  Google Scholar 

  36. Nehmeh SA, Erdi YE, Ling CC et al (2002) Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 43:876–881

    PubMed  Google Scholar 

  37. Suzawa N, Ichikawa Y, Ishida M, Tomita Y, Nakayama R, Sakuma H (2016) Respiratory-gated time-of-flight PET/CT during whole-body scan for lung lesions: Feasibility in a routine clinical setting and quantitative analysis. Ann Nucl Med 30:722–730

    Article  PubMed  Google Scholar 

  38. Chen HH, Chiu NT, Su WC, Guo HR, Lee BF (2012) Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology 264:559–566

    Article  PubMed  Google Scholar 

  39. Huang YE, Lu HI, Liu FY et al (2012) Solitary pulmonary nodules differentiated by dynamic F-18 FDG PET in a region with high prevalence of granulomatous disease. J Radiat Res 53:306–312

    Article  CAS  PubMed  Google Scholar 

  40. Lee P, Bazan JG, Lavori PW et al (2012) Metabolic tumor volume is an independent prognostic factor in patients treated definitively for non-small-cell lung cancer. Clin Lung Cancer 13:52–58

    Article  PubMed  Google Scholar 

  41. Lee P, Weerasuriya DK, Lavori PW et al (2007) Metabolic tumor burden predicts for disease progression and death in lung cancer. Int J Radiat Oncol Biol Phys 69:328–333

    Article  PubMed  Google Scholar 

  42. Liu J, Dong M, Sun X, Li W, Xing L, Yu J (2016) Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: A meta-analysis. PLoS One 11:e0146195

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kim DH, Son SH, Kim CY et al (2014) Prediction for recurrence using F-18 FDG PET/CT in pathologic N0 lung adenocarcinoma after curative surgery. Ann Surg Oncol 21:589–596

    Article  PubMed  Google Scholar 

  44. Lin Y, Lin WY, Kao CH, Yen KY, Chen SW, Yeh JJ (2012) Prognostic value of preoperative metabolic tumor volumes on PET-CT in predicting disease-free survival of patients with stage I non-small cell lung cancer. Anticancer Res 32:5087–5091

    PubMed  Google Scholar 

  45. Melloni G, Gajate AM, Sestini S et al (2013) New positron emission tomography derived parameters as predictive factors for recurrence in resected stage I non-small cell lung cancer. Eur J Surg Oncol 39:1254–1261

    Article  CAS  PubMed  Google Scholar 

  46. Zhang H, Wroblewski K, Liao S et al (2013) Prognostic value of metabolic tumor burden from (18)F-FDG PET in surgical patients with non-small-cell lung cancer. Acad Radiol 20:32–40

    Article  PubMed  Google Scholar 

  47. Gerbaudo VH, Julius B (2007) Anatomo-metabolic characteristics of atelectasis in F-18 FDG-PET/CT imaging. Eur J Radiol 64:401–405

    Article  PubMed  Google Scholar 

  48. Hovinga M, Sprengers R, Kauczor H-U, Schaefer-Prokop C (2016) CT imaging of interstitial lung diseases. Multidetector-row CT of the thorax. https://doi.org/10.1007/978-3-319-30355-0_7:105-130

  49. Bondue B, Castiaux A, Van Simaeys G et al (2019) Absence of early metabolic response assessed by 18F-FDG PET/CT after initiation of antifibrotic drugs in IPF patients. Respir Res 20:10

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fraioli F, Lyasheva M, Porter JC et al (2019) Synergistic application of pulmonary (18)F-FDG PET/HRCT and computer-based CT analysis with conventional severity measures to refine current risk stratification in idiopathic pulmonary fibrosis (IPF). Eur J Nucl Med Mol Imaging 46:2023–2031

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jacquelin V, Mekinian A, Brillet PY et al (2016) FDG-PET/CT in the prediction of pulmonary function improvement in nonspecific interstitial pneumonia. A pilot study. Eur J Radiol 85:2200–2205

    Article  CAS  PubMed  Google Scholar 

  52. Justet A, Laurent-Bellue A, Thabut G et al (2017) [(18)F]FDG PET/CT predicts progression-free survival in patients with idiopathic pulmonary fibrosis. Respir Res 18:74

    Article  PubMed  PubMed Central  Google Scholar 

  53. Win T, Screaton NJ, Porter JC et al (2018) Pulmonary (18)F-FDG uptake helps refine current risk stratification in idiopathic pulmonary fibrosis (IPF). Eur J Nucl Med Mol Imaging 45:806–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mueller-Mang C, Grosse C, Schmid K, Stiebellehner L, Bankier AA (2007) What every radiologist should know about idiopathic interstitial pneumonias. Radiographics 27:595–615

    Article  PubMed  Google Scholar 

  55. Hansell DM, Kerr IH (1991) The role of high resolution computed tomography in the diagnosis of interstitial lung disease. Thorax 46:77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work has not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Hyun Lee.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Suk Hyun Lee.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

The requirement for written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• Retrospective

• Observation study

• Performed at a single institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 4600 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.J., Son, H.J., Yun, M. et al. Prone position [18F]FDG PET/CT to reduce respiratory motion artefacts in the evaluation of lung nodules. Eur Radiol 31, 4606–4614 (2021). https://doi.org/10.1007/s00330-021-07894-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-07894-x

Keywords

Navigation