Skip to main content
Log in

Feature tracking myocardial strain analysis in patients with bileaflet mitral valve prolapse: relationship with LGE and arrhythmias

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Anatomical substrate and mechanical trigger co-act in arrhythmia’s onset in patients with bileaflet mitral valve prolapse (bMVP). Feature tracking (FT) may improve risk stratification provided by cardiac magnetic resonance (CMR). The aim was to investigate differences in CMR and FT parameters in bMVP patients with and without complex arrhythmias (cVA and no-cVA).

Methods

In this retrospective study, 52 patients with bMVP underwent 1.5 T CMR and were classified either as no-cVA (n = 32; 12 males; 49.6 ± 17.4 years) or cVA (n = 20; 3 males; 44.7 ± 11.2 years), the latter group including 6 patients (1 male; 45.7 ± 12.7 years) with sustained ventricular tachycardia or ventricular fibrillation (SVT-FV). Twenty-four healthy volunteers (11 males, 36.2 ± 12.5 years) served as control. Curling, prolapse distance, mitral annulus disjunction (MAD), and late gadolinium enhancement (LGE) were recorded and CMR-FT analysis performed. Statistical analysis included non-parametric tests and binary logistic regression.

Results

LGE and MAD distance were associated with cVA with an odds ratio (OR) of 8.51 for LGE (95% CI 1.76, 41.28; p = 0.008) and of 1.25 for MAD (95% CI 1.02, 1.54; p = 0.03). GLS 2D (− 11.65 ± 6.58 vs − 16.55 ± 5.09 1/s; p = 0.04), PSSR longitudinal 2D (0.04 ± 1.62 1/s vs − 1.06 ± 0.35 1/s; p = 0.0001), and PSSR radial 3D (3.95 ± 1.97 1/s vs 2.64 ± 1.03 1/s; p = 0.0001) were different for SVT-VF versus the others. PDSR circumferential 2D (1.10 ± 0.54 vs. 0.84 ± 0.34 1/s; p = 0.04) and 3D (0.94 ± 0.42 vs. 0.69 ± 0.17 1/s; p = 0.04) differed between patients with and without papillary muscle LGE.

Conclusions

CMR-FT allowed identifying subtle myocardial deformation abnormalities in bMVP patients at risk of SVT-VF. LGE and MAD distance were associated with cVA.

Key Points

• CMR-FT allows identifying several subtle myocardial deformation abnormalities in bMVP patients, especially those involving the papillary muscle.

• CMR-FT allows identifying subtle myocardial deformation abnormalities in bMVP patients at risk of SVT and VF.

• In patients with bMVP, the stronger predictor of cVA is LGE (OR = 8.51; 95% CI 1.76, 41.28; p = 0.008), followed by MAD distance (OR = 1.25; 95% CI 1.02, 1.54; p = 0.03).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

bMVP:

Bileaflet mitral valve prolapse

cVA:

Complex ventricular arrhythmias

EF:

Ejection fraction

FT:

Feature tracking

GCS:

Global circumferential strain

GLS:

Global longitudinal strain

GRS:

Global radial strain

HC:

Healthy control

MAD:

Mitral annulus disjunction

MVP:

Mitral valve prolapse

no-cVA:

Non-complex ventricular arrhythmias

PD:

Prolapse distance

PDSR:

Peak diastolic strain rate

PSSR:

Peak systolic strain rate

SVT:

Sustained ventricular tachycardia

VA:

Ventricular arrhythmia

VF:

Ventricular fibrillation

References

  1. Hayek E, Gring CN, Griffin BP (2005) Mitral valve prolapse. Lancet 365:507–518. https://doi.org/10.1016/S0140-6736(05)17869-6

    Article  PubMed  Google Scholar 

  2. Delling FN, Vasan RS (2014) Epidemiology and pathophysiology of mitral valve prolapse. Circulation 129:2158–2170. https://doi.org/10.1161/CIRCULATIONAHA.113.006702

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jeresaty RM (1986) Mitral valve prolapse: definition and implications in athletes. J Am Coll Cardiol 7:231–236. https://doi.org/10.1016/S0735-1097(86)80286-8

    Article  CAS  PubMed  Google Scholar 

  4. Basso C, Iliceto S, Thiene G, Perazzolo Marra M (2019) Mitral valve prolapse, ventricular arrhythmias, and sudden death. Circulation 140:952–964. https://doi.org/10.1161/CIRCULATIONAHA.118.034075

    Article  PubMed  Google Scholar 

  5. Barlow JB, Pocock WA (1963) The significance of late systolic murmurs and mid-late systolic clicks. Md State Med J 12:76–77

    CAS  PubMed  Google Scholar 

  6. Sriram CS, Syed FF, Ferguson ME et al (2013) Malignant bileaflet mitral valve prolapse syndrome in patients with otherwise idiopathic out-of-hospital cardiac arrest. J Am Coll Cardiol 62:222–230. https://doi.org/10.1016/j.jacc.2013.02.060

    Article  PubMed  Google Scholar 

  7. Nishimura RA, Otto CM, Bonow RO et al (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary. Circulation 129:2440–2492. https://doi.org/10.1161/CIR.0000000000000029

    Article  PubMed  Google Scholar 

  8. Basso C, Perazzolo Marra M, Rizzo S et al (2015) Arrhythmic mitral valve prolapse and sudden cardiac death. Circulation 132:556–566. https://doi.org/10.1161/CIRCULATIONAHA.115.016291

    Article  PubMed  Google Scholar 

  9. Dejgaard LA, Skjølsvik ET, Lie ØH et al (2018) The mitral annulus disjunction arrhythmic syndrome. J Am Coll Cardiol 72:1600–1609. https://doi.org/10.1016/j.jacc.2018.07.070

    Article  PubMed  Google Scholar 

  10. Pradella S, Grazzini G, Brandani M et al (2019) Cardiac magnetic resonance in patients with mitral valve prolapse: focus on late gadolinium enhancement and T1 mapping. Eur Radiol 29:1546–1554. https://doi.org/10.1007/s00330-018-5634-5

    Article  PubMed  Google Scholar 

  11. Bui AH, Roujol S, Foppa M et al (2017) Diffuse myocardial fibrosis in patients with mitral valve prolapse and ventricular arrhythmia. Heart 103:204–209. https://doi.org/10.1136/heartjnl-2016-309303

    Article  PubMed  Google Scholar 

  12. Chitiboi T, Axel L (2017) Magnetic resonance imaging of myocardial strain: a review of current approaches. J Magn Reson Imaging 46:1263–1280. https://doi.org/10.1002/jmri.25718

    Article  PubMed  Google Scholar 

  13. Ermakov S, Gulhar R, Lim L et al (2019) Left ventricular mechanical dispersion predicts arrhythmic risk in mitral valve prolapse. Heart 105:1063–1069. https://doi.org/10.1136/heartjnl-2018-314269

    Article  CAS  PubMed  Google Scholar 

  14. Han Y, Peters DC, Salton CJ et al (2008) Cardiovascular magnetic resonance characterization of mitral valve prolapse. JACC Cardiovasc Imaging 1:294–303. https://doi.org/10.1016/j.jcmg.2008.01.013

    Article  PubMed  Google Scholar 

  15. Gatti M, Palmisano A, Faletti R et al (2019) Two-dimensional and three-dimensional cardiac magnetic resonance feature-tracking myocardial strain analysis in acute myocarditis patients with preserved ejection fraction. Int J Cardiovasc Imaging 35:1101–1109. https://doi.org/10.1007/s10554-019-01588-8

    Article  PubMed  Google Scholar 

  16. Kramer CM, Barkhausen J, Flamm SD et al (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 15:91. https://doi.org/10.1186/1532-429X-15-91

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nacif MS, Barranhas AD, Türkbey E et al (2012) Left atrial volume quantification using cardiac MRI in atrial fibrillation: comparison of the Simpson’s method with biplane area-length, ellipse, and three-dimensional methods. Diagn Interv Radiol. https://doi.org/10.5152/dir.2012.002

  18. Perazzolo Marra M, Basso C, De Lazzari M et al (2016) Morphofunctional abnormalities of mitral annulus and arrhythmic mitral valve prolapse. Circ Cardiovasc Imaging 9. https://doi.org/10.1161/CIRCIMAGING.116.005030

  19. Gilbert BW, Schatz RA, VonRamm OT et al (1976) Mitral valve prolapse. Two-dimensional echocardiographic and angiographic correlation. Circulation 54:716–723. https://doi.org/10.1161/01.CIR.54.5.716

    Article  CAS  PubMed  Google Scholar 

  20. Eriksson MJ, Bitkover CY, Omran AS et al (2005) Mitral annular disjunction in advanced myxomatous mitral valve disease: echocardiographic detection and surgical correction. J Am Soc Echocardiogr 18:1014–1022. https://doi.org/10.1016/j.echo.2005.06.013

    Article  PubMed  Google Scholar 

  21. Kitkungvan D, Nabi F, Kim RJ et al (2018) Myocardial fibrosis in patients with primary mitral regurgitation with and without prolapse. J Am Coll Cardiol 72:823–834. https://doi.org/10.1016/j.jacc.2018.06.048

    Article  PubMed  Google Scholar 

  22. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  Google Scholar 

  23. Schulz-Menger J, Bluemke DA, Bremerich J et al (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing. J Cardiovasc Magn Reson 15:35. https://doi.org/10.1186/1532-429X-15-35

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schulz-Menger J, Bluemke DA, Bremerich J et al (2020) Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update. J Cardiovasc Magn Reson 22:19. https://doi.org/10.1186/s12968-020-00610-6

    Article  PubMed  PubMed Central  Google Scholar 

  25. Di Leo G, Sardanelli F (2020) Statistical significance: p value, 0.05 threshold, and applications to radiomics—reasons for a conservative approach. Eur Radiol Exp 4:18. https://doi.org/10.1186/s41747-020-0145-y

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bennett S, Thamman R, Griffiths T et al (2019) Mitral annular disjunction: a systematic review of the literature. Echocardiography 36:1549–1558. https://doi.org/10.1111/echo.14437

    Article  PubMed  Google Scholar 

  27. Slavich M, Palmisano A, Pannone L et al (2019) Hidden danger behind the prolapse. Circ Cardiovasc Imaging 12. https://doi.org/10.1161/CIRCIMAGING.119.009639

  28. Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100:1673–1680. https://doi.org/10.1136/heartjnl-2014-305538

    Article  PubMed  Google Scholar 

  29. Huttin O, Pierre S, Venner C et al (2016) Interactions between mitral valve and left ventricle analysed by 2D speckle tracking in patients with mitral valve prolapse: one more piece to the puzzle. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jew075

  30. Wang J, Khoury DS, Thohan V et al (2007) Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation 115:1376–1383. https://doi.org/10.1161/CIRCULATIONAHA.106.662882

    Article  PubMed  Google Scholar 

  31. Ruivo C, Vilela EM, Ladeiras-Lopes R et al (2019) Myocardial deformation measures by cardiac magnetic resonance tissue tracking in myocarditis: relationship with systolic function and myocardial damage. Rev Port Cardiol 38:767–776. https://doi.org/10.1016/j.repc.2019.01.008

    Article  PubMed  Google Scholar 

  32. Kempny A, Fernández-Jiménez R, Orwat S et al (2012) Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of fallot and healthy controls. J Cardiovasc Magn Reson 14:32. https://doi.org/10.1186/1532-429X-14-32

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Esposito.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Riccardo Faletti.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

Healthy volunteer cohort has been previously reported in Gatti M, Palmisano A, Faletti R, Benedetti G, Bergamasco L, Bioletto F, Peretto G, Sala S, De Cobelli F, Fonio P, Esposito A. Two-dimensional and three-dimensional cardiac magnetic resonance feature-tracking myocardial strain analysis in acute myocarditis patients with preserved ejection fraction. Int J Cardiovasc Imaging. 2019;35:1101–1109.

Methodology

• Retrospective

• Case-control study

• Multicenter study

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatti, M., Palmisano, A., Esposito, A. et al. Feature tracking myocardial strain analysis in patients with bileaflet mitral valve prolapse: relationship with LGE and arrhythmias. Eur Radiol 31, 7273–7282 (2021). https://doi.org/10.1007/s00330-021-07876-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-07876-z

Keywords

Navigation