Skip to main content
Log in

Visualization of lenticulostriate artery by intracranial dark-blood vessel wall imaging and its relationships with lacunar infarction in basal ganglia: a retrospective study

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

There is close relationship between lenticulostriate arteries (LSAs) and lacunar infarctions (LIs) of the basal ganglia. The study aims to visualize the LSAs using high-resolution vessel wall imaging (VWI) on 3T system and explore the correlation between LSAs and LIs.

Methods

Fifty-six patients with LIs in basal ganglia, and 44 age-matched control patients were enrolled and analyzed retrospectively. The raw VWI images were reformatted into coronal slices in minimum intensity projection for further observation of LSAs. The risk factors of LIs in basal ganglia were analyzed by univariate and multivariate logistic regression. The correlation and linear regression analysis between the LSAs and LIs, ipsilateral MCA-M1 plaques were investigated.

Results

The total number (p < 0.01) and length (p < 0.01) of LSAs were statistically different between basal ganglias with and without LIs. The total number of LSAs and ipsilateral MCA-M1 plaques were independently related to LIs in basal ganglias. The mean length of LSAs were negatively correlated with number (r = − 0.33, p = 0.002) and volume (r = − 0.37, p = 0.001) of LIs. Age, drinking history, and mean length of LSAs were associated with LI occurrence in basal ganglia, and mean length of LSAs was correlated with larger volume of LIs.

Conclusions

Number of LSA reduction and ipsilateral MCA-M1 plaques were associated with the presence of LIs in basal ganglias. Age increasing, drinking history, and shorter LSAs were correlated with the increasing of LIs.

Key Points

• Patients with LIs tend to have shorter LSAs.

• The characteristics of LSAs and ipsilateral MCA-M1 plaques are associated with LIs in basal ganglias.

• Age, drinking history, and mean length of LSAs are correlated with LI features in basal ganglias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

DWI:

Diffusion-weighted imaging

FLAIR:

Fluid-attenuated inversion recovery

ICA:

Internal carotid artery

ICA:

Internal carotid artery

ICC:

Interclass correlation coefficient

LIs:

Lacunar infarctions

LSAs:

Lenticulostriate arteries

MCA:

Middle cerebral artery

MinIP:

Minimum intensity projection

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

SPACE:

Sampling perfection with application-optimized contrast using different flip angle evolutions

T1WI:

T1-weighted imaging

T2WI:

T2-weighted imaging

VWI:

Vessel wall imaging

References

  1. Caplan LR (2015) Lacunar infarction and small vessel disease: pathology and pathophysiology. J Stroke 17(1):2–6. https://doi.org/10.5853/jos.2015.17.1.2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sharma M, Pearce LA, Benavente OR et al (2014) Predictors of mortality in patients with lacunar stroke in the secondary prevention of small subcortical strokes trial. Stroke 45(10):2989–2994. https://doi.org/10.1161/STROKEAHA.114.005789

    Article  PubMed  PubMed Central  Google Scholar 

  3. Greenberg SM (2006) Small vessels, big problems. N Engl J Med 354:1451–1453. https://doi.org/10.1056/NEJMp068043

    Article  CAS  PubMed  Google Scholar 

  4. Chen Z, Li W, Sun W et al (2017) Correlation study between small vessel disease and early neurological deterioration in patients with mild/moderate acute ischemic stroke. Int J Neurosci 127(7):579–585. https://doi.org/10.1080/00207454.2016.1214825

    Article  PubMed  Google Scholar 

  5. Mukai T, Hosomi N, Tsunematsu M et al (2017) Various meteorological conditions exhibit both immediate and delayed influences on the risk of stroke events: the HEWS-stroke study. PLoS One 12(6):e0178223. https://doi.org/10.1371/journal.pone.0178223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marinkovic S, Gibo H, Milisavljevic M, Cetkovic M (2001) Anatomic and clinical correlations of the lenticulostriate arteries. Clin Anat 14:190–195. https://doi.org/10.1002/ca.1032

    Article  CAS  PubMed  Google Scholar 

  7. Djulejić V, Marinković S, Maliković A et al (2012) Morphometric analysis, region of supply and microanatomy of the lenticulostriate arteries and their clinical significance. J Clin Neurosci 19(10):1416–1421. https://doi.org/10.1016/j.jocn.2011.10.025

    Article  PubMed  Google Scholar 

  8. Takase K, Murai H, Tasaki R et al (2011) Initial MRI findings predict progressive lacunar infarction in the territory of the lenticulostriate artery. Eur Neurol 65(6):355–360. https://doi.org/10.1159/000327980

    Article  PubMed  Google Scholar 

  9. Cho HJ, Roh HG, Moon WJ, Kim HY (2010) Perforator territory infarction in the lenticulostriate arterial territory: mechanisms and lesion patterns based on the axial location. Eur Neurol 63(2):107–115. https://doi.org/10.1159/000276401

    Article  PubMed  Google Scholar 

  10. Okuchi S, Okada T, Ihara M et al (2013) Visualization of lenticulostriate arteries by flow-sensitive black-blood MR angiography on a 1.5 T MRI system: a comparative study between subjects with and without stroke. AJNR Am J Neuroradiol 34(4):780–784. https://doi.org/10.3174/ajnr.A3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okuchi S, Okada T, Fujimoto K et al (2014) Visualization of lenticulostriate arteries at 3T: optimization of slice-selective off-resonance sinc pulse-prepared TOF-MRA and its comparison with flow-sensitive black-blood MRA. Acad Radiol 21(6):812–816. https://doi.org/10.1016/j.acra.2014.03.007

    Article  PubMed  Google Scholar 

  12. Gotoh K, Okada T, Miki Y et al (2009) Visualization of the lenticulostriate artery with flow-sensitive black-blood acquisition in comparison with time-of-flight MR angiography. J Magn Reson Imaging 29(1):65–69. https://doi.org/10.1002/jmri.21626

    Article  PubMed  Google Scholar 

  13. Fan Z, Yang Q, Deng Z et al (2017) Whole-brain intracranial vessel wall imaging at 3 Tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo. Magn Reson Med 77(3):1142–1150. https://doi.org/10.1002/mrm.26201

    Article  PubMed  Google Scholar 

  14. Zhang Z, Fan Z, Kong Q et al (2019) Visualization of the lenticulostriate arteries at 3T using black-blood T1-weighted intracranial vessel wall imaging: comparison with 7T TOF-MRA. Eur Radiol 29(3):1452–1459. https://doi.org/10.1007/s00330-018-5701-y

    Article  PubMed  Google Scholar 

  15. Alexander MD, Yuan C, Rutman A et al (2016) High-resolution intracranial vessel wall imaging: imaging beyond the lumen. J Neurol Neurosurg Psychiatry 87(6):589–597. https://doi.org/10.1136/jnnp-2015-312020

    Article  PubMed  Google Scholar 

  16. Xie Y, Yang Q, Xie G, Pang J, Fan Z, Li D (2016) Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med 75(6):2286–2294. https://doi.org/10.1002/mrm.25785

    Article  PubMed  Google Scholar 

  17. Mossa-Basha M, de Havenon A, Becker KJ et al (2016) Added value of vessel wall magnetic resonance imaging in the differentiation of moyamoya vasculopathies in a non-Asian cohort. Stroke 47(7):1782–1788. https://doi.org/10.1161/STROKEAHA.116.013320

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Turan TN, Chaudry I et al (2017) High-resolution magnetic resonance imaging evidence for intracranial vessel wall inflammation following endovascular thrombectomy. J Stroke Cerebrovasc Dis 26(5):e96–e98. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.02.006

    Article  PubMed  Google Scholar 

  19. Wang M, Yang Y, Zhou F et al (2017) The contrast enhancement of intracranial arterial wall on high-resolution MRI and its clinical relevance in patients with moyamoya vasculopathy. Sci Rep 7:44264. https://doi.org/10.1038/srep44264

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mossa-Basha M, Hwang WD, De Havenon A et al (2015) Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke 46(6):1567–1573. https://doi.org/10.1161/STROKEAHA.115.009037

    Article  PubMed  Google Scholar 

  21. Zhu XJ, Wang W, Liu ZJ (2016) High-resolution magnetic resonance vessel wall imaging for intracranial arterial stenosis. Chin Med J (Engl) 129(11):1363–1370. https://doi.org/10.4103/0366-6999.182826

    Article  Google Scholar 

  22. Arai D, Satow T, Komuro T, Kobayashi A, Nagata H, Miyamoto S (2016) Evaluation of the arterial wall in vertebrobasilar artery dissection using high-resolution magnetic resonance vessel wall imaging. J Stroke Cerebrovasc Dis 25(6):1444–1450. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.01.047

    Article  PubMed  Google Scholar 

  23. Mossa-Basha M, Alexander M, Gaddikeri S, Yuan C, Gandhi D (2016) Vessel wall imaging for intracranial vascular disease evaluation. J Neurointerv Surg 8(11):1154–1159. https://doi.org/10.1136/neurintsurg-2015-012127

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hendrikse J, Zwanenburg JJ, Visser F, Takahara T, Luijten P (2008) Noninvasive depiction of the lenticulostriate arteries with time-of-flight MR angiography at 7.0 T. Cerebrovasc Dis 26(6):624–629. https://doi.org/10.1159/000166838

    Article  PubMed  Google Scholar 

  25. Kang CK, Park CW, Han JY et al (2009) Imaging and analysis of lenticulostriate arteries using 7.0-Tesla magnetic resonance angiography. Magn Reson Med 61(1):136–144. https://doi.org/10.1002/mrm.21786

    Article  PubMed  Google Scholar 

  26. Ohara T, Yamamoto Y, Tamura A, Ishii R, Murai T (2010) The infarct location predicts progressive motor deficits in patients with acute lacunar infarction in the lenticulostriate artery territory. J Neurol Sci 293(1-2):87–91. https://doi.org/10.1016/j.jns.2010.02.027

    Article  PubMed  Google Scholar 

  27. Mandell DM, Mossa-Basha M, Qiao Y et al (2017) Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 38(2):218–229. https://doi.org/10.3174/ajnr.A4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kong Q, Zhang Z, Yang Q et al (2019) 7T TOF-MRA shows modulated orifices of lenticulostriate arteries associated with atherosclerotic plaques in patients with lacunar infarcts. Eur J Radiol 118:271–276. https://doi.org/10.1016/j.ejrad.2019.07.032

    Article  PubMed  Google Scholar 

  29. Djulejic V, Marinkovic S, Milic V et al (2015) Common features of the cerebral perforating arteries and their clinical significance. Acta Neurochir (Wien) 157(5):743–754; discussion 754. https://doi.org/10.1007/s00701-015-2378-8

    Article  Google Scholar 

  30. Wardlaw JM, Dennis MS, Warlow CP, Sandercock PA (2001) Imaging appearance of the symptomatic perforating artery in patients with lacunar infarction: occlusion or other vascular pathology? Ann Neurol 50(02):208–215. https://doi.org/10.1002/ana.1082

    Article  CAS  PubMed  Google Scholar 

  31. Kang CK, Worz S, Liao W et al (2012) Three dimensional model-based analysis of the lenticulostriate arteries and identification of the vessels correlated to the infarct area: preliminary results. Int J Stroke 7(7):558–563. https://doi.org/10.1111/j.1747-4949.2011.00611.x

    Article  PubMed  Google Scholar 

  32. Yang L, Qin W, Zhang X, Li Y, Gu H, Hu W (2016) Infarct size may distinguish the pathogenesis of lacunar infarction of the middle cerebral artery territory. Med Sci Monit 22:211–218. https://doi.org/10.12659/msm.896898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee KJ, Jung H, Oh YS, Lim EY, Cho AH (2017) The fate of acute lacunar lesions in terms of shape and size. J Stroke Cerebrovasc Dis 26(6):1254–1257. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.01.017

    Article  PubMed  Google Scholar 

  34. Viessmann O, Li L, Benjamin P, Jezzard P (2017) T2-weighted intracranial vessel wall imaging at 7 Tesla using a DANTE-prepared variable flip angle turbo spin echo readout (DANTE-SPACE). Magn Reson Med 77(2):655–663. https://doi.org/10.1002/mrm.26152

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Chao Chai for statistical consultation and Jinxia Zhu for amending the abstract, and thank Tianjin First Central Hospital for providing convenience of finishing this research paper.

Funding

This work was supported in part by the Natural Scientific Foundation of China (grant number 81871342 to Shuang Xia), the National Institutes of Health (NIH/NHLBI 1 R01 HL147355), and the Tianjin First Central Hospital Fund (grant number 2019CM05 to Yu Guo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Xia.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Shuang Xia.

Conflict of interest

One of the authors of this manuscript (Tianyi Qian) is an employee of Siemens Healthcare. The remaining authors declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

Chao Chai kindly provided statistical advice for this manuscript.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• case-control study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 26645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Wang, C., Liu, S. et al. Visualization of lenticulostriate artery by intracranial dark-blood vessel wall imaging and its relationships with lacunar infarction in basal ganglia: a retrospective study. Eur Radiol 31, 5629–5639 (2021). https://doi.org/10.1007/s00330-020-07642-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-07642-7

Keywords

Navigation