Skip to main content
Log in

Retrograde blood flow in the internal jugular veins of humans with hypertension may have implications for cerebral arterial blood flow

  • Vascular-Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To use multi-parametric magnetic resonance imaging (MRI) to test the hypothesis that hypertensives would have higher retrograde venous blood flow (RVBF) in the internal jugular veins (IJV) vs. normotensives, and that this would inversely correlate with arterial inflow and gray matter, white matter, and cerebrospinal fluid volumes.

Methods

Following local institutional review board approval and written consent, a prospective observational 3-T MRI study of 42 hypertensive patients (53 ± 2 years, BMI 28.2 ± 0.6 kg/m2, ambulatory daytime systolic BP 148 ± 2 mmHg, ambulatory daytime diastolic BP 101 ± 2 mmHg) and 35 normotensive patients (48 ± 2 years, BMI 25.2 ± 0.8 kg/m2, ambulatory daytime systolic BP 119 ± 3 mmHg, ambulatory daytime diastolic BP 90 ± 2 mmHg) was performed. Phase contrast imaging calculated percentage retrograde venous blood flow (%RVBF), brain segmentation estimated regional brain volumes from 3D T1-weighted images, and pseudo-continuous arterial spin labeling measured regional cerebral blood perfusion. Statistical analysis included two-sample equal variance Student’s T tests, two-way analysis of variance with Tukey’s post hoc correction, and permutation-based two-group general linear modeling (p < 0.05).

Results

In the left IJV, %RVBF was higher in hypertensives (6.1 ± 1.5%) vs. normotensives (1.1 ± 0.3%, p = 0.003). In hypertensives, there was an inverse relationship of %RVBF (permutation-based general linear modeling) to cerebral blood flow in several brain regions, including the left occipital pole and the cerebellar vermis (p < 0.01). Percentage retrograde flow in the left IJV correlated inversely with the total matter volume (gray plus white matter volume) in hypertensives (r = − 0.49, p = 0.004).

Conclusion

RVBF in the left IJV is greater in hypertensives vs. normotensives and is linked to regional hypoperfusion and brain total matter volume.

Key Points

• Hypertensive humans have higher retrograde cerebral venous blood flow, associated with regional brain hypoperfusion and lower tissue volume, compared with controls.

• Cerebral retrograde venous blood flow may add further stress to already hypoperfused tissue in hypertensive patients.

• The amount of retrograde venous blood flow in hypertensive patients may predict which patients might be at higher risk of developing cerebral pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BP:

Blood pressure

CSA:

Cross-sectional area

CSF:

Cerebrospinal fluid

IJV:

Internal jugular vein

MRI:

Magnetic resonance imaging

PCASL:

Pseudo-continuous arterial spin labeling

ROI:

Region of interest

RVBF:

Retrograde venous blood flow

References

  1. de Leeuw F-E, de Groot JC, Oudkerk M et al (2002) Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125:765–772

    Article  Google Scholar 

  2. Raz N, Lindenberger U, Rodrigue KM et al (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15:1676–1689. https://doi.org/10.1093/cercor/bhi044

    Article  PubMed  Google Scholar 

  3. Muller M, van der Graaf Y, Visseren FL Mali WP, Geerlings MI(2012) Hypertension and longitudinal changes in cerebral blood flow: the SMART-MR study. Ann Neurol 71:825–833. https://doi.org/10.1002/ana.23554

    Article  PubMed  Google Scholar 

  4. Qiu C, Winblad B, Fratiglioni L (2005) The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol 4:487–499. https://doi.org/10.1016/S1474-4422(05)70141-1

    Article  PubMed  Google Scholar 

  5. Warnert EAH, Rodrigues JCL, Burchell AE et al (2016) Is high blood pressure self-protection for the brain? Circ Res 119:e140–e151. https://doi.org/10.1161/CIRCRESAHA.116.309493

    Article  CAS  PubMed  Google Scholar 

  6. Farkas E, De Jong GI, Apró E Keuker JI, Luiten PG (2001) Calcium antagonists decrease capillary wall damage in aging hypertensive rat brain. Neurobiol Aging 22:299–309

  7. Schaller B (2004) Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Rev 46:243–260. https://doi.org/10.1016/j.brainresrev.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  8. Marcotti S, Marchetti L, Cecconi P et al (2015) An anatomy-based lumped parameter model of cerebrospinal venous circulation: can an extracranial anatomical change impact intracranial hemodynamics? BMC Neurol 15:95. https://doi.org/10.1186/s12883-015-0352-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paksoy Y, Genç BO, Genç E (2003) Retrograde flow in the left inferior petrosal sinus and blood steal of the cavernous sinus associated with central vein stenosis: MR angiographic findings. AJNR Am J Neuroradiol 24:1364–1368

    PubMed  Google Scholar 

  10. Uchino A, Nomiyama K, Takase Y et al (2007) Retrograde flow in the dural sinuses detected by three-dimensional time-of-flight MR angiography. Neuroradiology 49:211–215. https://doi.org/10.1007/s00234-006-0186-9

    Article  PubMed  Google Scholar 

  11. Zamboni P, Menegatti E, Bartolomei I et al (2007) Intracranial venous haemodynamics in multiple sclerosis. Curr Neurovasc Res 4:252–258

    Article  Google Scholar 

  12. Cheng C-Y, Chang F-C, Chao A-C Chung CP, Hu HH (2013) Internal jugular venous abnormalities in transient monocular blindness. BMC Neurol 13:94. https://doi.org/10.1186/1471-2377-13-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. https://doi.org/10.1126/science.1197623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung C-P, Beggs C, Wang P-N et al (2014) Jugular venous reflux and white matter abnormalities in Alzheimer’s disease: a pilot study. J Alzheimers Dis 39:601–609. https://doi.org/10.3233/JAD-131112

    Article  PubMed  Google Scholar 

  15. Kuriyama N, Tokuda T, Miyamoto J et al (2008) Retrograde jugular flow associated with idiopathic normal pressure hydrocephalus. Ann Neurol 64:217–221. https://doi.org/10.1002/ana.21410

    Article  PubMed  Google Scholar 

  16. Mancia G, Fagard R, Narkiewicz K et al (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34:2159–2219. https://doi.org/10.1093/eurheartj/eht151

    Article  PubMed  Google Scholar 

  17. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57. https://doi.org/10.1109/42.906424

    Article  CAS  PubMed  Google Scholar 

  18. Heiberg E, Sjögren J, Ugander M et al (2010) Design and validation of segment--freely available software for cardiovascular image analysis. BMC Med Imaging 10:1. https://doi.org/10.1186/1471-2342-10-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schrauben EM, Johnson KM, Huston J et al (2014) Reproducibility of cerebrospinal venous blood flow and vessel anatomy with the use of phase contrast-vastly undersampled isotropic projection reconstruction and contrast-enhanced MRA. AJNR Am J Neuroradiol 35:999–1006. https://doi.org/10.3174/ajnr.A3779

    Article  CAS  PubMed  Google Scholar 

  20. Buxton RB, Frank LR, Wong EC et al (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396

    Article  CAS  Google Scholar 

  21. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841

    Article  Google Scholar 

  22. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25

    Article  Google Scholar 

  23. Winkler AM, Ridgway GR, Webster MA et al (2014) Permutation inference for the general linear model. Neuroimage 92:381–397. https://doi.org/10.1016/j.neuroimage.2014.01.060

    Article  PubMed  PubMed Central  Google Scholar 

  24. Canhão P, Ferro JM, Stam J (2009) Cerebral venous thrombosis. Handb Clin Neurol 93:809–822. https://doi.org/10.1016/S0072-9752(08)93040-2

    Article  PubMed  Google Scholar 

  25. Sander D, Winbeck K, Etgen T et al (2000) Disturbance of venous flow patterns in patients with transient global amnesia. Lancet 356:1982–1984. https://doi.org/10.1016/S0140-6736(00)03313-4

    Article  CAS  PubMed  Google Scholar 

  26. Chung C-P, Wang P-N, Wu Y-H et al (2011) More severe white matter changes in the elderly with jugular venous reflux. Ann Neurol 69:553–559. https://doi.org/10.1002/ana.22276

    Article  PubMed  Google Scholar 

  27. Kiliç T, Akakin A (2008) Anatomy of cerebral veins and sinuses. Front Neurol Neurosci 23:4–15. https://doi.org/10.1159/000111256

    Article  PubMed  Google Scholar 

  28. Ono T, Okita Y, Ando M, Kitamura S (2000) Retrograde cerebral perfusion in human brains. Lancet 356:1323. https://doi.org/10.1016/S0140-6736(00)02818-X

    Article  CAS  PubMed  Google Scholar 

  29. Kawasaki R, Cheung N, Wang JJ et al (2009) Retinal vessel diameters and risk of hypertension: the Multiethnic Study of Atherosclerosis. J Hypertens 27:2386–2393. https://doi.org/10.1097/HJH.0b013e3283310f7e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frost S, Kanagasingam Y, Sohrabi H et al (2013) Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl Psychiatry 3:e233. https://doi.org/10.1038/tp.2012.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gotoh M, Ohmoto T, Kuyama H (1993) Experimental study of venous circulatory disturbance by dural sinus occlusion. Acta Neurochir 124:120–126

    Article  CAS  Google Scholar 

  32. Bedfor THB (1935) The effect of increased intracranial venous pressure on the pressure of the cerebrospinal fluid. Brain 58:427–447. https://doi.org/10.1093/brain/58.4.427

    Article  Google Scholar 

  33. Welch K, Friedman V (1960) The cerebrospinal fluid valves. Brain 83:454–469

    Article  CAS  Google Scholar 

  34. van der Veen PH, Muller M, Vincken KL et al (2014) Brain volumes and risk of cardiovascular events and mortality. The SMART-MR study. Neurobiol Aging 35:1624–1631. https://doi.org/10.1016/j.neurobiolaging.2014.02.003

    Article  PubMed  Google Scholar 

  35. Waki H, Bhuiyan MER, Gouraud SS et al (2011) Acute reductions in blood flow restricted to the dorsomedial medulla induce a pressor response in rats. J Hypertens 29:1536–1545. https://doi.org/10.1097/HJH.0b013e3283484106

    Article  CAS  PubMed  Google Scholar 

  36. San Millán Ruíz D, Gailloud P, Rüfenacht DA et al (2002) The craniocervical venous system in relation to cerebral venous drainage. AJNR Am J Neuroradiol 23:1500–1508

    PubMed  Google Scholar 

  37. Kudo K, Terae S, Ishii A et al (2004) Physiologic change in flow velocity and direction of dural venous sinuses with respiration: MR venography and flow analysis. AJNR Am J Neuroradiol 25:551–557

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Peter Hobden, Martin Stuart, and John Evans for their help in designing MR paradigms and acquiring the MR images. We would also like to thank the research nurses Rissa Calsena and Jenny Wilcox for their help in recruiting and screening the participants. Finally, we would like to thank the volunteers for participating in this study.

Funding

The study was funded by the British Heart Foundation (IBSRF FS/11/1/28400; ECH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma C. Hart.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Emma Hart.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• Prospective

• Observational

• Performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, J.C.L., Strelko, G., Warnert, E.A.H. et al. Retrograde blood flow in the internal jugular veins of humans with hypertension may have implications for cerebral arterial blood flow. Eur Radiol 30, 3890–3899 (2020). https://doi.org/10.1007/s00330-020-06752-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-06752-6

Keywords

Navigation