Skip to main content
Log in

Dynamic contrast-enhanced MR imaging of the prostate: intraindividual comparison of gadoterate meglumine and gadobutrol

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To intraindividually compare the signal-enhancing effect of 0.5 M gadoterate meglumine and 1.0 M gadobutrol in dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging of the prostate.

Methods

Fifty patients who underwent two 3-T MR examinations of the prostate were included in this IRB-approved retrospective uncontrolled, unrandomized study. All received two scans (mean time interval, 20.5 months) including T1-weighted DCE-MR imaging, one with 0.5 M gadoterate meglumine and one with 1.0 M gadobutrol. Equimolar doses of gadolinium (0.1 mmol/kg body weight) were administered with identical injection speed (2 mL/s), resulting in differing gadolinium delivery rate. An identical region of interest (ROItz) within a BPH-node was identified on both scans. The area under the time-enhancement curve of each ROItz from 0 to 180 s post contrast arrival and pharmacokinetic parameters were calculated. Relative enhancement and signal-to-noise (SNR) and contrast-to-noise (CNR) ratios in the delayed phase at about 180 s were compared between both agents.

Results

There was a significantly larger area under the time-enhancement curve (5.53 vs 4.97 p = 0.0007) and higher relative enhancement of BPH nodules (2.23 vs 1.96 p < 0.0001) with gadobutrol compared with gadoterate meglumine. There were no significant differences in SNR (44.55 vs 37.63 p = 0.12), CNR (31.22 vs 26.39 p = 0.18), and pharmacokinetic parameters Ktrans (0.31 vs 0.32 p = 0.86), Ve (1.36 vs 0.98 p = 0.13), and Kep (0.34 vs 0.36 p = 0.12).

Conclusions

At equimolar doses, increased gadolinium delivery over time using gadobutrol provides higher relative enhancement parameters in BPH nodules compared with gadoterate meglumine, but does not translate into improved SNR or CNR.

Key Points

At equal injection rate and equimolar total dose, gadobutrol compared with gadoterate meglumine provides a significantly greater relative enhancement in DCE-MR imaging of BPH over the first 180 s.

There are no significant differences in SNRs, CNRs, and pharmacokinetic parameters between the two GBCAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUCenh :

Area under the RE-t curve from contrast agent arrival time to 180 s after arrival

BPH:

Benign prostatic hyperplasia

CNR:

Contrast-to-noise ratio

DCE-MR:

Dynamic contrast-enhanced magnetic resonance

GBCA:

Gadolinium-based contrast agent

GRAPPA:

GeneRalized Autocalibrating Partial Parallel Acquisition

IRB:

Institutional Review Board

Kep:

Flux rate constant

Ktrans:

Volume transfer constant reflecting the efflux rate of gadolinium contrast from blood plasma into the interstitial space

MR:

Magnetic resonance

RE:

Relative enhancement

RE-t:

Relative enhancement over time

ROItz :

Region of interest corresponding to a BPH nodule in the transition zone

SNR:

Signal-to-noise ratio

t 180 :

Time point closest to 180 s after first DCE-MR acquisition

TE:

Echo time

TR:

Repetition time

Ve:

Extravascular extracellular space corresponding to the interstitial space

References

  1. Bellin MF, Van Der Molen AJ (2008) Extracellular gadolinium-based contrast media: an overview. Eur J Radiol 66:160–167

    Article  PubMed  Google Scholar 

  2. Rohrer M, Bauer H, Mintorovitch J, Reguardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  PubMed  Google Scholar 

  3. Cuenod CA, Balvay D (2013) Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging 94:1187–1204

    Article  CAS  PubMed  Google Scholar 

  4. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101

    Article  CAS  PubMed  Google Scholar 

  5. Attenberger UI, Runge VM, Morelli JN, Williams J, Jackson CB, Michaely HJ (2010) Evaluation of gadobutrol, a macrocyclic, nonionic gadolinium chelate in a brain glioma model: comparison with gadoterate meglumine and gadopentetate dimeglumine at 1.5 T, combined with an assessment of field strength dependence, specifically 1.5 versus 3 T. J Magn Reson Imaging 31:549–555

    Article  PubMed  Google Scholar 

  6. Fallenberg EM, Renz DM, Karle B et al (2015) Intraindividual, randomized comparison of the macrocyclic contrast agents gadobutrol and gadoterate meglumine in breast magnetic resonance imaging. Eur Radiol 25:837–849

    Article  PubMed  Google Scholar 

  7. Durmus T, Vollnberg B, Schwenke C et al (2013) Dynamic contrast enhanced MRI of the prostate: comparison of gadobutrol and Gd-DTPA. Rofo 85:862–868

    Google Scholar 

  8. Kulh CK, Mielcarek P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110

    Article  Google Scholar 

  9. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    Article  CAS  PubMed  Google Scholar 

  10. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385

    Article  PubMed  Google Scholar 

  11. Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374

    Article  CAS  PubMed  Google Scholar 

  12. Prince MR, Lee HG, Lee CH et al (2017) Safety of gadobutrol in over 23,000 patients: the GARDIAN study, a global multicentre, prospective, non-interventional study. Eur Radiol 27:286–295

    Article  PubMed  Google Scholar 

  13. Elster AD (1997) How much contrast is enough? Dependence of enhancement on field strength and MR pulse sequence. Eur Radiol 7:S276–S280

    Article  Google Scholar 

  14. Anzalone N, Scarabino T, Venturi C et al (2013) Cerebral neoplastic enhancing lesions: multicenter, randomized, crossover intraindividual comparison between gadobutrol (1.0M) and gadoterate meglumine (0.5M) at 0.1 mmol Gd/kg body weight in a clinical setting. Eur J Radiol 82:139–145

    Article  PubMed  Google Scholar 

  15. Maravilla KR, San-Juan D, Kim SJ et al (2017) Comparison of gadoterate meglumine and gadobutrol in the MRI diagnosis of primary brain tumors: a double-blind randomized controlled intraindividual crossover study (the REMIND study). AJNR Am J Neuroradiol 38:1681–1688

    Article  CAS  PubMed  Google Scholar 

  16. Saake M, Langner S, Schwenke C et al (2016) MRI in multiple sclerosis: an intra-individual, randomized and multicentric comparison of gadobutrol with gadoterate meglumine at 3 T. Eur Radiol 26:820–828

    Article  PubMed  Google Scholar 

  17. Lancelot E, Froehlich J, Heine O, Desché P (2016) Effects of gadolinium-based contrast agent concentrations (0.5 M or 1.0 M) on the diagnostic performance of magnetic resonance imaging examinations: systematic review of the literature. Acta Radiol 57:1334–1343

    Article  PubMed  Google Scholar 

  18. Haneder S, Attenberger UI, Schoenberg SO, Loewe C, Arnaiz J, Michaely HJ (2012) Comparison of 0.5 M gadoterate and 1.0 M gadobutrol in peripheral MRA: a prospective, single-center, randomized, crossover, double-blind study. J Magn Reson Imaging 36:1213–1221

    Article  PubMed  Google Scholar 

  19. Szucs-Farkas Z, Froehlich JM, Ulrich M et al (2008) 1.0-M gadobutrol versus 0.5-M gadoterate for peripheral magnetic resonance angiography: a prospective randomized controlled clinical trial. J Magn Reson Imaging 27:1399–1405

    Article  PubMed  Google Scholar 

  20. Kramer JH, Arnoldi E, François CJ et al (2013) Dynamic and static magnetic resonance angiography of the supra-aortic vessels at 3.0 T: intraindividual comparison of gadobutrol, gadobenate dimeglumine, and gadoterate meglumine at equimolar dose. Invest Radiol 48:121–128

    Article  CAS  PubMed  Google Scholar 

  21. Hoelter P, Lang S, Weibart M et al (2017) Prospective intraindividual comparison of gadoterate and gadobutrol for cervical and intracranial contrast-enhanced magnetic resonance angiography. Neuroradiology 59:1233–1239

    Article  PubMed  Google Scholar 

  22. Loewe C, Arnaiz J, Krause D, Marti-Bonmati L, Haneder S, Kramer U (2015) MR angiography at 3 T of peripheral arterial disease: a randomized prospective comparison of gadoterate meglumine and gadobutrol. AJR Am J Roentgenol 204:1311–1321

    Article  PubMed  Google Scholar 

  23. Renz DM, Durmus T, Böttcher J et al (2014) Comparison of gadoteric acid and gadobutrol for detection as well as morphologic and dynamic characterization of lesions on breast dynamic contrast-enhanced magnetic resonance imaging. Invest Radiol 49:474–484

    Article  CAS  PubMed  Google Scholar 

  24. Pediconi F, Catalano C, Padula S et al (2008) Contrast-enhanced MR mammography: improved lesion detection and differentiation with gadobenate dimeglumine. AJR Am J Roentgenol 191:1339–1346

    Article  PubMed  Google Scholar 

  25. Martincich L, Faivre-Pierret M, Zechmann CM et al (2011) Multicenter, double-blind, randomized, intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for breast MR imaging (DETECT trial). Radiology 258:396–408

    Article  PubMed  Google Scholar 

  26. Franiel T, Hamm B, Hricak H (2011) Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 21:616–626

    Article  PubMed  Google Scholar 

  27. De Visschere PJL, Vral A, Perletti G et al (2017) Multiparametric magnetic resonance imaging characteristics of normal, benign and malignant conditions in the prostate. Eur Radiol 27:2095–2109

    Article  PubMed  Google Scholar 

  28. Brown DL, Lalla CD, Masselink AJ (2013) AUC versus peak-trough dosing of vancomycin: applying new pharmacokinetic paradigms to an old drug. Ther Drug Monit 35:443–449

    Article  CAS  PubMed  Google Scholar 

  29. Tombach B, Benner T, Reimer P et al (2003) Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/L gadobutrol. Radiology 226:880–888

    Article  PubMed  Google Scholar 

  30. Weishaupt D, Köchli VD, Marincek B (2003) Factors affecting the signal-to-noise ratio. In: How does MRI work? Springer, Berlin, pp 31–42

    Chapter  Google Scholar 

  31. Kim YK, Lee YH, Kim CS, Han YM, Hwang SB (2008) Double-dose 1.0-M gadobutrol versus standard-dose 0.5-M gadopentetate dimeglumine in revealing small hypervascular hepatocellular carcinomas. Eur Radiol 18:70–77

    Article  PubMed  Google Scholar 

  32. Pennekamp W, Roggenland D, Hering S et al (2011) Intraindividual, randomised comparison of the MRI contrast agents gadobutrol and gadoterate in imaging the distal lower limb of patients with known or suspected osteomyelitis, evaluated in an off-site blinded read. Eur Radiol 21:1058–1067

    Article  PubMed  Google Scholar 

  33. Escribano F, Sentís M, Oliva JC et al (2018) Dynamic magnetic resonance imaging of the breast: comparison of gadobutrol vs. Gd-DTPA. Radiologia 60:49–56

    Article  CAS  PubMed  Google Scholar 

  34. Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 43:817–828

  35. Gillis A, Gray M, Burstein D (2002) Relaxivity and diffusion of gadolinium agents in cartilage. Magn Reson Med 48:1068–1071

    Article  CAS  PubMed  Google Scholar 

  36. Wiener E, Woertler K, Weirich G, Rummeny EJ, Settles M (2007) Contrast enhanced cartilage imaging: comparison of ionic and non-ionic contrast agents. Eur J Radiol 63:110–119

    Article  PubMed  Google Scholar 

  37. Mathur SK, Gupta S, Marwah N, Narula A, Singh S, Arora B (2003) Significance of mucin stain in differentiating benign and malignant lesions of prostate. Indian J Pathol Microbiol 46:593–595

  38. Khanna A, Patil R, Deshmukh A (2014) Assessment of the potential of pathological stains in human prostate cancer. J Clin Diagn Res 8:124–128

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chesnais AL, Niaf E, Bratan F et al (2013) Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: evaluation of discriminant criteria at multiparametric MRI. Clin Radiol 68:e323–e330

    Article  CAS  PubMed  Google Scholar 

  40. van Niekerk CG, Witjes JA, Barentsz JO, van der Laak JA, Hulsbergen-van de Kaa CA (2013) Microvascularity in transition zone prostate tumors resembles normal prostatic tissue. Prostate 73:467–475

  41. Lemaitre L, Puech P, Poncelet E et al (2009) Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol 19:470–480

    Article  PubMed  Google Scholar 

  42. Purysko AS, Rosenkrantz AB, Barentsz JO, Weinreb JC, Macura KJ (2016) PI-RADS version 2: a pictorial update. Radiographics 36:1354–1372

    Article  PubMed  Google Scholar 

  43. Drew PJ, Chatterjee S, Turnbull LW et al (1999) Dynamic contrast enhanced magnetic resonance imaging of the breast is superior to triple assessment for the pre-operative detection of multifocal breast cancer. Ann Surg Oncol 6:599–603

    Article  CAS  PubMed  Google Scholar 

  44. Pickles MD, Lowry M, Manton DJ, Turnbull LW (2015) Prognostic value of DCE-MRI in breast cancer patients undergoing neoadjuvant chemotherapy: a comparison with traditional survival indicators. Eur Radiol 25:1097–1106

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Bettina Herwig for language editing of the manuscript.

Funding

The authors state that this work was partially-funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1340/1 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chau Hung Lee.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Patrick Asbach.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• observational

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.H., Vellayappan, B., Taupitz, M. et al. Dynamic contrast-enhanced MR imaging of the prostate: intraindividual comparison of gadoterate meglumine and gadobutrol. Eur Radiol 29, 6982–6990 (2019). https://doi.org/10.1007/s00330-019-06321-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-019-06321-6

Keywords

Navigation