Skip to main content

Advertisement

Log in

Intravoxel incoherent motion magnetic resonance imaging for differentiating metastatic and non-metastatic lymph nodes in pancreatic ductal adenocarcinoma

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the diagnostic potential of intravoxel incoherent motion (IVIM) DWI for differentiating metastatic and non-metastatic lymph node stations (LNS) in pancreatic ductal adenocarcinoma (PDAC).

Methods

59 LNS histologically diagnosed following surgical resection from 15 patients were included. IVIM DWI with 12 b values was added to the standard MRI protocol. Evaluation of parameters was performed pre-operatively and included the apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudo-diffusion coefficient (D*) and perfusion fraction (f). Diagnostic performance of ADC, D, D* and f for differentiating between metastatic and non-metastatic LNS was evaluated using ROC analysis.

Results

Metastatic LNS had significantly lower D, D*, f and ADC values than the non-metastatic LNS (p< 0.01). The best diagnostic performance was found in D, with an area under the ROC curve of 0.979, while the area under the ROC curve values of D*, f and ADC were 0.867, 0.855 and 0.940, respectively. The optimal cut-off values for distinguishing metastatic and non-metastatic lymph nodes were D = 1.180 × 10−3 mm2/s; D* = 14.750 × 10−3 mm2/s, f = 20.65 %, and ADC = 1.390 × 10−3 mm2/s.

Conclusion

IVIM DWI is useful for differentiating between metastatic and non-metastatic LNS in PDAC.

Key Points

IVIM DWI is feasible for diagnosing LN metastasis in PDAC.

Metastatic LNS has lower D, D*, f, ADC values than non-metastatic LNS.

D-value from IVIM model has best diagnostic performance, followed by ADC value.

D* has the lowest AUC value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

AUC:

Area under the receiver operating characteristic curve

D:

True diffusion coefficient

D*:

Pseudo-diffusion coefficient

DWI:

Diffusion-weighted imaging

f:

Perfusion fraction

ICC:

Intraclass correlation coefficient

IVIM:

Intravoxel incoherent motion

LNS:

Lymph node stations

PD:

Pancreaticoduodenectomy

PDAC:

Pancreatic ductal adenocarcinoma

PTAC:

Pancreaticobiliary-type ampullary carcinoma

ROI:

Region of interest

References

  1. Becker AE, Hernandez YG, Frucht H, Lucas AL (2014) Pancreatic ductal adenocarcinoma: risk factors, screening, and early detection. World J Gastroenterol 20:11182–11198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Krska Z, Svab J, Hoskovec D, Ulrych J (2015) Pancreatic Cancer Diagnostics and Treatment--Current State. Prague Med Rep 116:253–267

    Article  PubMed  Google Scholar 

  3. Lim JE, Chien MW, Earle CC (2003) Prognostic factors following curative resection for pancreatic adenocarcinoma: a population-based, linked database analysis of 396 patients. Ann Surg 240:74–85

    Article  Google Scholar 

  4. Schwarz RE, Smith DD (2006) Extent of lymph node retrieval and pancreatic cancer survival: information from a large US population database. Ann Surg Oncol 13:1189–1200

    Article  PubMed  Google Scholar 

  5. Gilabert M, Boher JM, Raoul JL et al (2017) Comparison of preoperative imaging and pathological findings for pancreatic head adenocarcinoma: A retrospective analysis by the Association Francaise de Chirurgie. Medicine (Baltimore) 96:e7214

    Article  Google Scholar 

  6. Kauhanen SP, Komar G, Seppanen MP et al (2009) A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann Surg 250:957–963

    Article  PubMed  Google Scholar 

  7. Tseng DS, van Santvoort HC, Fegrachi S et al (2014) Diagnostic accuracy of CT in assessing extra-regional lymphadenopathy in pancreatic and peri-ampullary cancer: a systematic review and meta-analysis. Surg Oncol 23:229–235

    Article  PubMed  Google Scholar 

  8. Asagi A, Ohta K, Nasu J et al (2013) Utility of contrast-enhanced FDG-PET/CT in the clinical management of pancreatic cancer: impact on diagnosis, staging, evaluation of treatment response, and detection of recurrence. Pancreas 42:11–19

    Article  PubMed  Google Scholar 

  9. Fong ZV, Tan WP, Lavu H et al (2013) Preoperative imaging for resectable periampullary cancer: clinicopathologic implications of reported radiographic findings. J Gastrointest Surg 17:1098–1106

    Article  PubMed  Google Scholar 

  10. Imai H, Doi R, Kanazawa H et al (2010) Preoperative assessment of para-aortic lymph node metastasis in patients with pancreatic cancer. Int J Clin Oncol 15:294–300

    Article  PubMed  Google Scholar 

  11. Soriano A, Castells A, Ayuso C et al (2004) Preoperative staging and tumor resectability assessment of pancreatic cancer: prospective study comparing endoscopic ultrasonography, helical computed tomography, magnetic resonance imaging, and angiography. Am J Gastroenterol 99:492–501

    Article  PubMed  Google Scholar 

  12. Le BD, Breton E, Lallemand D, Grenier P, Cabanis E, Lavaljeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401

    Article  Google Scholar 

  13. Yu XP, Wen L, Hou J et al (2016) Discrimination between Metastatic and Nonmetastatic Mesorectal Lymph Nodes in Rectal Cancer Using Intravoxel Incoherent Motion Diffusion-weighted Magnetic Resonance Imaging. Acad Radiol 23:479–485

    Article  PubMed  Google Scholar 

  14. Qiu L, Liu XL, Liu SR et al (2016) Role of quantitative intravoxel incoherent motion parameters in the preoperative diagnosis of nodal metastasis in patients with rectal carcinoma. J Magn Reson Imaging 44:1031–1039

    Article  PubMed  Google Scholar 

  15. Ye X, Chen S, Tian Y et al (2017) A preliminary exploration of the intravoxel incoherent motion applied in the preoperative evaluation of mediastinal lymph node metastasis of lung cancer. J Thorac Dis 9:1073–1080

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liang L, Luo X, Lian Z et al (2017) Lymph node metastasis in head and neck squamous carcinoma: Efficacy of intravoxel incoherent motion magnetic resonance imaging for the differential diagnosis. Eur J Radiol 90:159–165

    Article  PubMed  Google Scholar 

  17. Bosman FT, World Health Organization., International Agency for Research on Cancer (2010) WHO classification of tumours of the digestive system, 4th edn. International Agency for Research on Cancer, Lyon

    Google Scholar 

  18. Westgaard A, Tafjord S, Farstad IN et al (2008) Pancreatobiliary versus intestinal histologic type of differentiation is an independent prognostic factor in resected periampullary adenocarcinoma. BMC Cancer 8:1–11

    Article  CAS  Google Scholar 

  19. Chang DK, Jamieson NB, Johns AL et al (2013) Histomolecular phenotypes and outcome in adenocarcinoma of the ampulla of vater. J Clin Oncol 31:1348–1356

    Article  PubMed  Google Scholar 

  20. Kim JH, Kim MJ, Chung JJ, Lee WJ, Yoo HS, Lee JT (2002) Differential diagnosis of periampullary carcinomas at MR imaging. Radiographics 22:1335–135

  21. Dixon WT (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging: a modest proposal with tremendous potential. Radiology 168:566–567

    Article  PubMed  CAS  Google Scholar 

  22. Marquardt DW (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  23. Sobin LH, Gospodarowicz MK, Wittekind C, International Union against Cancer (2010) TNM classification of malignant tumours, 7th edn. Wiley-Blackwell, Chichester, West Sussex, Hoboken

  24. Capurso G, Signoretti M, Valente R et al (2015) Methods and outcomes of screening for pancreatic adenocarcinoma in high-risk individuals. World J Gastrointest Endosc 7:833–842

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lemke A, Laun FB, Klauss M et al (2009) Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 44:769

    Article  PubMed  Google Scholar 

  26. Yi WM, Chen ZE, Paul Nikolaidis MD et al (2011) Diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinomas: Association with histopathology and tumor grade. J Magn Reson Imaging 33:136–142

    Article  Google Scholar 

  27. Fattahi R, Balci NC, Perman WH et al (2010) Pancreatic diffusion-weighted imaging (DWI): comparison between mass-forming focal pancreatitis (FP), pancreatic cancer (PC), and normal pancreas. J Magn Reson Imaging 29:350–356

    Article  Google Scholar 

  28. Klauss M, Maier-Hein K, Tjaden C, Hackert T, Grenacher L, Stieltjes B (2016) IVIM DW-MRI of autoimmune pancreatitis: therapy monitoring and differentiation from pancreatic cancer. Eur Radiol 26:2099–2106

    Article  PubMed  Google Scholar 

  29. Lu Y, Jansen JF, Stambuk HE et al (1900) Comparing primary tumors and metastatic nodes in head and neck cancer using intravoxel incoherent motion imaging: a preliminary experience. J Comput Assist Tomogr 37:346–352

    Article  Google Scholar 

  30. Kwee TC, Takahara T, Niwa T et al (2009) Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver. Magn Reson Mater Phys Biol Med 22:319–325

    Article  CAS  Google Scholar 

  31. Cohen AD, Schieke MC, Hohenwalter MD, Schmainda KM (2015) The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver. Magn Reson Med 73:306–311

    Article  PubMed  Google Scholar 

  32. Shinmoto H, Tamura C, Soga S et al (2012) An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol 199:W496

    Article  PubMed  Google Scholar 

  33. Fukukura Y, Shindo T, Hakamada H et al (2016) Diffusion-weighted MR imaging of the pancreas: optimizing b-value for visualization of pancreatic adenocarcinoma. Eur Radiol 26:3419–3427

    Article  PubMed  Google Scholar 

  34. Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology 249:891–899

    Article  PubMed  Google Scholar 

  35. Lemke A, Laun FB, Klauss M et al (2009) Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Investig Radiol 44:769–775

    Article  Google Scholar 

  36. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623

    Article  PubMed  CAS  Google Scholar 

  37. Lemke A, Stieltjes B, Schad LR, Laun FB (2011) Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 29:766–776

    Article  PubMed  Google Scholar 

  38. Lee Y, Lee SS, Kim N et al (2015) Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology 274:405–415

    Article  PubMed  Google Scholar 

  39. Barbieri S, Donati OF, Froehlich JM, Thoeny HC (2016) Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs. Magn Reson Med 75:2175–2184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the native English-speaking scientists of Elixigen Company (Huntington Beach, California) for editing our manuscript.

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengping Li or Rong Zhang.

Ethics declarations

Guarantor

Rong Zhang, Sun Yat-Sen University Cancer Center.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• observational

• performed at one institution

Electronic supplementary material

ESM 1

(DOCX 6661 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, D., Mao, Y., Hu, W. et al. Intravoxel incoherent motion magnetic resonance imaging for differentiating metastatic and non-metastatic lymph nodes in pancreatic ductal adenocarcinoma. Eur Radiol 28, 2781–2789 (2018). https://doi.org/10.1007/s00330-017-5259-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5259-0

Keywords

Navigation