Skip to main content

Advertisement

Log in

Can positron emission mammography help to identify clinically significant breast cancer in women with suspicious calcifications on mammography?

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the diagnostic accuracy of positron emission mammography (PEM) for identifying malignant lesions in patients with suspicious microcalcifications detected on mammography.

Methods

A prospective, single-centre study that evaluated 40 patients with suspicious calcifications at mammography and indication for percutaneous or surgical biopsy, with mean age of 56.4 years (range: 28-81 years). Patients who agreed to participate in the study underwent PEM with 18F-fluorodeoxyglucose before the final histological evaluation. PEM findings were compared with mammography and histological findings.

Results

Most calcifications (n = 34; 85.0 %) were classified as BIRADS 4. On histology, there were 25 (62.5 %) benign and 15 (37.5 %) malignant lesions, including 11 (27.5 %) ductal carcinoma in situ (DCIS) and 4 (10 %) invasive carcinomas. On subjective analysis, PEM was positive in 15 cases (37.5 %) and most of these cases (n = 14; 93.3 %) were confirmed as malignant on histology. There was one false-positive result, which corresponded to a fibroadenoma, and one false negative, which corresponded to an intermediate-grade DCIS. PEM had a sensitivity of 93.3 %, specificity of 96.0 % and accuracy of 95 %.

Conclusion

PEM was able to identify all invasive carcinomas and high-grade DCIS (nuclear grade 3) in the presented sample, suggesting that this method may be useful for further evaluation of patients with suspected microcalcifications.

Key Points

Many patients with suspicious microcalcifications at mammography have benign results at biopsy.

PEM may help to identify invasive carcinomas and high-grade DCIS.

Management of patients with suspicious calcifications can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

95 % CI:

95 % confidence interval

AUC:

area under the curve

BIRADS:

Breast Imaging Report and Data System

CC:

craniocaudal

DCIS:

ductal carcinoma in situ

FDG:

18F-fluorodeoxyglucose

LTB:

lesion to background

MLO:

mediolateral oblique

NPV:

negative predictive value

PEM:

Positron emission mammography

PET/CT:

Positron emission tomography/computed tomography

PPV:

positive predictive value

PUVmax:

PEM uptake value

ROC:

receiver-operating characteristic

SE:

standard error

References

  1. Siu AL (2016) Screening for breast cancer: US preventive services task force recommendation statement. Ann Intern Med 151:716–726

    Google Scholar 

  2. Coşar ZS, Çetin M, Kizil Tepe T et al (2005) Concordance of mammographic classifications of microcalcifications in breast cancer diagnosis: utility of the Breast Imaging Reporting and Data System (fourth edition). Clin Imaging 29:389–395

    Article  PubMed  Google Scholar 

  3. Tse GM, Tan P-H, Pang ALM et al (2008) Calcification in breast lesions: pathologists’ perspective. J Clin Pathol 61:145–151

    Article  CAS  PubMed  Google Scholar 

  4. Burnside ES, Ochsner JE, Fowler KJ et al (2007) Use of microcalcification descriptors in BI-RADS 4th edition to stratify risk of malignancy. Radiology 242:388–395

    Article  PubMed  Google Scholar 

  5. Fondrinier E, Lorimier G, Guerin-Boblet V et al (2002) Breast microcalcifications: multivariate analysis of radiologic and clinical factors for carcinoma. World J Surg 26:290–296

    Article  PubMed  Google Scholar 

  6. Myers ER, Moorman P, Gierisch JM et al (2015) Benefits and harms of breast cancer screening: a systematic review. JAMA 314:1615–1634

    Article  CAS  PubMed  Google Scholar 

  7. Skaane P (1999) The additional value of US to mammography in the diagnosis of breast cancer. A prospective study. Acta Radiol 40:486–490

    Article  CAS  PubMed  Google Scholar 

  8. Kang SS, Ko EY, Han BK, Shin JH (2008) Breast US in patients who had microcalcifications with low concern of malignancy on screening mammography. Eur J Radiol 67:285–291

    Article  PubMed  Google Scholar 

  9. Giess CS, Chikarmane SA, Sippo DA, Birdwell RL (2016) Breast MR imaging for equivocal mammographic findings: help or hindrance? Radiographics 36:943–956

    Article  PubMed  Google Scholar 

  10. Bazzocchi M, Zuiani C, Panizza P et al (2006) Contrast-enhanced breast MRI in patients with suspicious microcalcifications on mammography: results of a multicenter trial. AJR Am J Roentgenol 186:1723–1732

    Article  PubMed  Google Scholar 

  11. Berg WA, Weinberg IN, Narayanan D et al (2006) High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J 12:309–323

    Article  PubMed  Google Scholar 

  12. Tafreshi NK, Kumar V, Morse DL, Gatenby RA (2010) Molecular and functional imaging of breast cancer. Cancer Control 17:143–155

    PubMed  Google Scholar 

  13. Kalinyak JE, Berg WA, Schilling K et al (2014) Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT. Eur J Nucl Med Mol Imaging 41:260–275

    Article  PubMed  Google Scholar 

  14. Glass SB, Shah ZA (2013) Clinical utility of positron emission mammography. Proc (Bayl Univ Med Cent) 26:314–319

    Google Scholar 

  15. Schilling K, Narayanan D, Kalinyak JE et al (2011) Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging. Eur J Nucl Med Mol Imaging 38:23–36

    Article  PubMed  Google Scholar 

  16. Kalles V, Zografos GC, Provatopoulou X et al (2013) The current status of positron emission mammography in breast cancer diagnosis. Breast Cancer 20:123–130

    Article  PubMed  Google Scholar 

  17. Yamamoto Y, Tasaki Y, Kuwada Y et al (2016) A preliminary report of breast cancer screening by positron emission mammography. Ann Nucl Med 30:130–137

    Article  PubMed  Google Scholar 

  18. Kalinyak JE, Schilling K, Berg WA et al (2011) PET-guided breast biopsy. Breast J 17:143–151

    Article  PubMed  Google Scholar 

  19. Narayanan D, Madsen KS, Kalinyak JE, Berg WA (2011) Interpretation of positron emission mammography: feature analysis and rates of malignancy. Am J Roentgenol 196:956–970

    Article  Google Scholar 

  20. Sickles EA, D’Orsi CJ, Bassett LW et al (2013) ACR BI-RADS Mammography. In: ACR BI-RADS Atlas, breast imaging reporting and data system. American College of Radiology, Reston, VA

  21. Goldhirsch A, Winer EP, Coates AS et al (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol 24:2206–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Narod SA, Iqbal J, Giannakeas V et al (2015) Breast cancer mortality after a diagnosis of ductal carcinoma in situ. JAMA Oncol 1:888–896

    Article  PubMed  Google Scholar 

  23. Merrill AL, Esserman L, Morrow M (2016) Ductal carcinoma in situ. N Engl J Med 374:390–392

    Article  PubMed  Google Scholar 

  24. Lopez-Garcia MA, Geyer FC, Lacroix-Triki M et al (2010) Breast cancer precursors revisited: molecular features and progression pathways. Histopathology 57:171–192

    Article  PubMed  Google Scholar 

  25. Carraro DM, Elias EV, Andrade VP (2014) Ductal carcinoma in situ of the breast: morphological and molecular features implicated in progression. Biosci Rep 34:19–28

    Article  Google Scholar 

  26. Esserman LJ, Thompson IM, Reid B et al (2014) Addressing overdiagnosis and overtreatment in cancer: a prescription for change. Lancet Oncol 15:e234–e242

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kuhl CK, Schrading S, Bieling HB et al (2007) MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet 370:485–492

    Article  PubMed  Google Scholar 

  28. Berg WA, Madsen KS, Schilling K et al (2011) Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology 258:59–72

    Article  PubMed  PubMed Central  Google Scholar 

  29. Caldarella C, Treglia G, Giordano A (2014) Diagnostic performance of dedicated positron emission mammography using fluorine-18- Fluorodeoxyglucose in women with suspicious breast lesions : a meta-analysis. Clin Breast Cancer 14:241–248

    Article  PubMed  Google Scholar 

  30. Bitencourt AGV, Lima ENP, Chojniak R et al (2014) Correlation between PET-CT results and histological and immunohistochemical findings in breast carcinomas. Radiol Bras 47:67–73

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mavi A, Cermik TF, Urhan M et al (2007) The effects of estrogen, progesterone, and C-erbB-2 receptor states on 18F-FDG uptake of primary breast cancer lesions. J Nucl Med 48:1266–1272

    Article  CAS  PubMed  Google Scholar 

  32. Wang CL, MacDonald LR, Rogers JV et al (2011) Positron emission mammography: correlation of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 status and 18 F-FDG. Am J Roentgenol 197:W247–W255

    Article  Google Scholar 

  33. Benveniste AP, Yang W, Benveniste MF et al (2014) Benign breast lesions detected by positron emission tomography-computed tomography. Eur J Radiol 83:919–929

    Article  PubMed  Google Scholar 

  34. Adejolu M, Huo L, Rohren E et al (2012) False-positive lesions mimicking breast cancer on FDG PET and PET/CT. AJR Am J Roentgenol 198:W304–W314

    Article  PubMed  Google Scholar 

  35. Jackman RJ, Marzoni FA, Rosenberg J (2009) False-negative diagnoses at stereotactic vacuum-assisted needle breast biopsy: long-term follow-up of 1,280 lesions and review of the literature. Am J Roentgenol 192:341–351

    Article  Google Scholar 

  36. Argus A, Mahoney MC (2014) Positron emission mammography: diagnostic imaging and biopsy on the same day. Am J Roentgenol 202:216–222

    Article  Google Scholar 

  37. Narayanan D, Madsen KS, Kalinyak JE, Berg WA (2011) Interpretation of positron emission mammography and MRI by experienced breast imaging radiologists: performance and observer reproducibility. Am J Roentgenol 196:971–981

    Article  Google Scholar 

  38. Yamamoto Y, Tasaki Y, Kuwada Y et al (2013) Positron emission mammography (PEM): reviewing standardized semiquantitative method. Ann Nucl Med 27:795–801

    Article  PubMed  PubMed Central  Google Scholar 

  39. Koo HR, Moon WK, Chun IK et al (2013) Background 18F-FDG uptake in positron emission mammography (PEM): correlation with mammographic density and background parenchymal enhancement in breast MRI. Eur J Radiol 82:1738–1742

    Article  PubMed  Google Scholar 

  40. Wrixon AD (2008) New ICRP recommendations. J Radiol Prot 28:161–168

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almir G. V. Bitencourt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bitencourt, A.G.V., Lima, E.N.P., Macedo, B.R.C. et al. Can positron emission mammography help to identify clinically significant breast cancer in women with suspicious calcifications on mammography?. Eur Radiol 27, 1893–1900 (2017). https://doi.org/10.1007/s00330-016-4576-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4576-z

Keywords

Navigation