Skip to main content
Log in

Angiomyolipoma (AML) without visible fat: Ultrasound, CT and MR imaging features with pathological correlation

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To compare imaging findings with histopathology in AML without visible fat (AMLwvf).

Material and methods

With IRB approval, we identified 18 AMLwvf that underwent CT between 2002-2014. A radiologist measured NECT-attenuation, corticomedullary (CM) and nephrographic (NG) enhancement, echogenicity relative to renal cortex (RC) (N = 5), T2W (T2AML/T2RC) signal-intensity (SI), and chemical-shift SI ([SIIN-PHASE − SIOPPOSED-PHASE]/SIIN-PHASE) indices (N = 6). A pathologist re-evaluated 15/18 AMLwvf for 1) < or > 25 % adipocytes/high-power-field (HPF), 2) “many or few” blood vessels. Comparisons were performed using chi-square and independent t-tests.

Results

73.3 %(11/15) of AMLwvf had <25 % adipocytes/HPF and 86.7 %(13/15) had “many” blood vessels. NECT-attenuation was 41.8(±6.9) HU. 61.1 %(11/18) of AMLwvf were hyper-attenuating and 38.9 %(7/18) iso-attenuating; attenuation was associated with %-adipocytes/HPF, (p = 0.01). CM/NG enhancement were 63.3(±20.8)/51.7(±15.5) HU. 72.2 %(13/18) of AMLwvf had wash-out enhancement, with no association with amount of blood vessels at pathology, (p = 0.68). No difference in echogenicity was noted by histology (p > 0.05). All AMLwvf were T2-hypointense (SI ratio = 0.61 [±0.1]). 2/6 AMLwvf showed SI drop on chemical-shift MRI; both were iso-attenuating and were associated with >25 % adipocytes/HPF (p = 0.04).

Conclusions

AMLwvf are typically T2-hypointense and hyper-attenuating with wash-out enhancement due to abundant smooth muscle and vessels respectively. Iso-attenuating AMLwvf with microscopic fat on MRI contain more adipocytes/HPF.

Key Points

Five percent of AML do not demonstrate detectable fat on imaging

These AML are hyperattenuating and T2-hypointense due to abundant smooth muscle

These AML show washout enhancement without association to vessel count at histopathology

Iso-attenuating AML with microscopic fat on MRI show >25 % adipocytes/HPF

The term “AML without visible fat” is proposed to reduce ambiguity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eble JN SG, Epstein JI, Sesterhenn IA (2004) World Health Organization classification of tumors: Pathology and genetics of tumors of the urinary system and male genital organs. . Lyon, Fr. Available via http://www.iarc.fr/en/publications/pdfs-online/pat-gen/bb7/BB7.pdf2013

  2. Bissler JJ, Kingswood JC (2004) Renal angiomyolipomata. Kidney Int 66:924–934

    Article  PubMed  Google Scholar 

  3. Schieda N, Kielar AZ, Al Dandan O, McInnes MD, Flood TA (2015) Ten uncommon and unusual variants of renal angiomyolipoma (AML): radiologic-pathologic correlation. Clin Radiol 70(2):206–220

  4. Schieda N, Avruch L, Flood TA (2014) Small (<1 cm) incidental echogenic renal cortical nodules: chemical shift MRI outperforms CT for confirmatory diagnosis of angiomyolipoma (AML). Insights Imaging 5(3):295–299

  5. Schieda N, Hodgdon T, El-Khodary M, Flood TA, McInnes MD (2014) Unenhanced CT for the Diagnosis of Minimal-Fat Renal Angiomyolipoma. AJR Am J Roentgenol 203:1236–1241

    Article  PubMed  Google Scholar 

  6. Remzi M, Ozsoy M, Klingler HC et al (2006) Are small renal tumors harmless? Analysis of histopathological features according to tumors 4 cm or less in diameter. J Urol 176:896–899

    Article  PubMed  Google Scholar 

  7. Violette P, Abourbih S, Szymanski KM et al (2012) Solitary solid renal mass: can we predict malignancy? BJU Int 110:E548–E552

    Article  PubMed  Google Scholar 

  8. Sant GR, Heaney JA, Ucci AA Jr, Sarno RC, Meares EM Jr (1984) Computed tomographic findings in renal angiomyolipoma: an histologic correlation. Urology 24:293–296

    Article  PubMed  CAS  Google Scholar 

  9. Jinzaki M, Tanimoto A, Narimatsu Y et al (1997) Angiomyolipoma: imaging findings in lesions with minimal fat. Radiology 205:497–502

    Article  PubMed  CAS  Google Scholar 

  10. Kim JK, Kim SH, Jang YJ et al (2006) Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging. Radiology 239:174–180

    Article  PubMed  Google Scholar 

  11. Kim JK, Park SY, Shon JH, Cho KS (2004) Angiomyolipoma with minimal fat: differentiation from renal cell carcinoma at biphasic helical CT. Radiology 230:677–684

    Article  PubMed  Google Scholar 

  12. Kim JY, Kim JK, Kim N, Cho KS (2008) CT histogram analysis: differentiation of angiomyolipoma without visible fat from renal cell carcinoma at CT imaging. Radiology 246:472–479

    Article  PubMed  Google Scholar 

  13. Simpfendorfer C, Herts BR, Motta-Ramirez GA et al (2009) Angiomyolipoma with minimal fat on MDCT: can counts of negative-attenuation pixels aid diagnosis? AJR Am J Roentgenol 192:438–443

    Article  PubMed  Google Scholar 

  14. Hindman N, Ngo L, Genega EM et al (2012) Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology 265:468–477

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang YY, Luo S, Liu Y, Xu RT (2013) Angiomyolipoma with minimal fat: differentiation from papillary renal cell carcinoma by helical CT. Clin Radiol 68:365–370

    Article  PubMed  Google Scholar 

  16. Chaudhry HS, Davenport MS, Nieman CM, Ho LM, Neville AM (2012) Histogram analysis of small solid renal masses: differentiating minimal fat angiomyolipoma from renal cell carcinoma. AJR Am J Roentgenol 198:377–383

    Article  PubMed  Google Scholar 

  17. Jinzaki M, Silverman SG, Akita H, Nagashima Y, Mikami S, Oya M (2014) Renal angiomyolipoma: a radiological classification and update on recent developments in diagnosis and management. Abdom Imaging 39:588–604

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang CW, Shen SH, Chang YH et al (2013) Are there useful CT features to differentiate renal cell carcinoma from lipid-poor renal angiomyolipoma? AJR Am J Roentgenol 201:1017–1028

    Article  PubMed  Google Scholar 

  19. Milner J, McNeil B, Alioto J et al (2006) Fat poor renal angiomyolipoma: patient, computerized tomography and histological findings. J Urol 176:905–909

    Article  PubMed  Google Scholar 

  20. Jinzaki M, Silverman SG, Akita H, Nagashima Y, Mikami S, Oya M (2014) Renal angiomyolipoma: a radiological classification and update on recent developments in diagnosis and management. Abdom Imaging 39(3):588–604

  21. Pusiol T, Piscioli I, Morini A, Pedrosa I, Rofsky NM (2013) Discordance about the use of the term minimal fat angiomyolipoma. Radiology 267:656–657

    Article  PubMed  Google Scholar 

  22. Pusiol T, Piscioli I, Scialpi M (2013) Minimal fat angiomyolipoma: a controversial subtype of classic angiomyolipoma. AJR Am J Roentgenol 201:W359

    Article  PubMed  Google Scholar 

  23. Davenport MS, Neville AM, Ellis JH, Cohan RH, Chaudhry HS, Leder RA (2011) Diagnosis of renal angiomyolipoma with Hounsfield unit thresholds: effect of size of region of interest and nephrographic phase imaging. Radiology 260:158–165

    Article  PubMed  Google Scholar 

  24. Pierorazio PM, Hyams ES, Tsai S et al (2013) Multiphasic enhancement patterns of small renal masses (</=4 cm) on preoperative computed tomography: utility for distinguishing subtypes of renal cell carcinoma, angiomyolipoma, and oncocytoma. Urology 81:1265–1271

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee-Felker SA, Felker ER, Tan N et al (2014) Qualitative and quantitative MDCT features for differentiating clear cell renal cell carcinoma from other solid renal cortical masses. AJR Am J Roentgenol 203:W516–W524

    Article  PubMed  Google Scholar 

  26. Siegel CL, Middleton WD, Teefey SA, McClennan BL (1996) Angiomyolipoma and renal cell carcinoma: US differentiation. Radiology 198:789–793

    Article  PubMed  CAS  Google Scholar 

  27. Farrelly C, Delaney H, McDermott R, Malone D (2008) Do all non-calcified echogenic renal lesions found on ultrasound need further evaluation with CT? Abdom Imaging 33:44–47

    Article  PubMed  Google Scholar 

  28. Sasiwimonphan K, Takahashi N, Leibovich BC, Carter RE, Atwell TD, Kawashima A (2012) Small (<4 cm) renal mass: differentiation of angiomyolipoma without visible fat from renal cell carcinoma utilizing MR imaging. Radiology 263:160–168

    Article  PubMed  Google Scholar 

  29. Karlo CA, Donati OF, Burger IA et al (2013) MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters. Eur Radiol 23:1738–1744

    Article  PubMed  Google Scholar 

  30. Ramamurthy NK, Moosavi B, McInnes MD, Flood TA, Schieda N (2015) Multiparametric MRI of solid renal masses: pearls and pitfalls. Clin Radiol 70(3):304–16

  31. Chung MS, Choi HJ, Kim MH, Cho KS (2014) Comparison of t2-weighted MRI with and without fat suppression for differentiating renal angiomyolipomas without visible fat from other renal tumors. AJR Am J Roentgenol 202:765–771

    Article  PubMed  Google Scholar 

  32. Choi HJ, Kim JK, Ahn H, Kim CS, Kim MH, Cho KS (2011) Value of T2-weighted MR imaging in differentiating low-fat renal angiomyolipomas from other renal tumors. Acta Radiol 52:349–353

    Article  PubMed  Google Scholar 

  33. Ferre R, Cornelis F, Verkarre V, et al (2015) Double-echo gradient chemical shift MR imaging fails to differentiate minimal fat renal angiomyolipomas from other homogeneous solid renal tumors. Eur J Radiol 84(3):360–365

  34. Hodgdon T, McInnes MD, Schieda N, Flood TA, Lamb L, Thornhill RE (2015) Can Quantitative CT Texture Analysis be Used to Differentiate Fat-poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images? Radiology:142215

  35. Pedrosa I, Sun MR, Spencer M et al (2008) MR imaging of renal masses: correlation with findings at surgery and pathologic analysis. Radiographics 28:985–1003

    Article  PubMed  Google Scholar 

  36. Campbell N, Rosenkrantz AB, Pedrosa I (2014) MRI phenotype in renal cancer: is it clinically relevant? Top Magn Reson Imaging 23:95–115

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schieda N vdPC, Moosavi B, McInnes MDF, Mai KT, Flood TA (2015) Intracellular lipid in papillary renal cell carcinoma (RCC) at chemical-shift MRI: Radiologic-Pathologic correlation. Eur Radiol. doi:10.1007/s00330-015-3610-x

  38. Cornelis F, Tricaud E, Lasserre AS et al (2014) Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumours. Eur Radiol 24:1068–1080

    Article  PubMed  CAS  Google Scholar 

  39. Lassel EA, Rao R, Schwenke C, Schoenberg SO, Michaely HJ (2014) Diffusion-weighted imaging of focal renal lesions: a meta-analysis. Eur Radiol 24:241–249

    Article  PubMed  CAS  Google Scholar 

  40. Tanaka H, Yoshida S, Fujii Y et al (2011) Diffusion-weighted magnetic resonance imaging in the differentiation of angiomyolipoma with minimal fat from clear cell renal cell carcinoma. Int J Urol 18:727–730

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Nicola Schieda, MD FRCP(C). The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors has significant statistical expertise. Institutional review board approval was obtained. Written informed consent was waived by the institutional review board. Methodology: retrospective, cross-sectional study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Schieda.

Appendix

Appendix

Table 2 Pulse sequence parameters for dual-echo T1-weighted (in-phase and opposed-phase) GRE and T2-weighted FSE at 1.5 and 3 Teslaa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakim, S.W., Schieda, N., Hodgdon, T. et al. Angiomyolipoma (AML) without visible fat: Ultrasound, CT and MR imaging features with pathological correlation. Eur Radiol 26, 592–600 (2016). https://doi.org/10.1007/s00330-015-3851-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3851-8

Keywords

Navigation