Skip to main content
Log in

Characterizing the contrast of white matter and grey matter in high-resolution phase difference enhanced imaging of human brain at 3.0 T

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this study was to address the feasibility of characterizing the contrast both between and within grey matter and white matter using the phase difference enhanced (PADRE) technique.

Methods

PADRE imaging was performed in 33 healthy volunteers. Vessel enhancement (VE), tissue enhancement (TE), and PADRE images were reconstructed from source images and were evaluated with regard to differentiation of grey-to-white matter interface, the stria of Gennari, and the two layers, internal sagittal stratum (ISS) and external sagittal stratum (ESS), of optic radiation.

Results

White matter regions showed decreased signal intensity compared to grey matter regions. Discrimination was sharper between white matter and cortical grey matter in TE images than in PADRE images, but was poorly displayed in VE images. The stria of Gennari was observed on all three image sets. Low-signal-intensity bands displayed in VE images representing the optic radiation were delineated as two layers of different signal intensities in TE and PADRE images. Statistically significant differences in phase shifts were found between frontal grey and white matter, as well as between ISS and ESS (p < 0.01).

Conclusions

The PADRE technique is capable of identifying grey-to-white matter interface, the stria of Gennari, and ISS and ESS, with improved contrast in PADRE and TE images compared to VE images.

Key Points

Phase difference enhanced (PADRE) imaging can yield diverse contrasts between tissues

The PADRE technique utilizes the inherent variety of magnetic susceptibilities

PADRE MR imaging provides better visualization of certain cerebral anatomy in vivo

PADRE imaging is able to delineate the stria of Gennari in the primary visual cortex

PADRE imaging is able to identify the two optic radiation layers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PADRE:

Phase difference enhanced imaging

VE:

Vessel enhancement

TE:

Tissue enhancement

FGM:

Frontal grey matter

FWM:

Frontal white matter

ISS:

Internal sagittal stratum

ESS:

External sagittal stratum

SWI:

Susceptibility-weighted imaging

GRE:

Gradient-recalled echo

References

  1. Rauscher A, Sedlacik J, Barth M, Mentzel HJ, Reichenbach JR (2005) Magnetic susceptibility-weighted MR phase imaging of the human brain. AJNR Am J Neuroradiol 26:736–742

    PubMed  Google Scholar 

  2. Abduljalil AM, Schmalbrock P, Novak V, Chakeres DW (2003) Enhanced gray and white matter contrast of phase susceptibility-weighted images in ultra-high-field magnetic resonance imaging. J Magn Reson Imaging 18:284–290

    Article  PubMed  Google Scholar 

  3. Duyn JH, van Gelderen P, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 104:11796–11801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Article  PubMed  Google Scholar 

  5. Hammond KE, Lupo JM, Xu D et al (2008) Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases. Neuroimage 39:1682–1692

    Article  PubMed Central  PubMed  Google Scholar 

  6. Manova ES, Habib CA, Boikov AS et al (2009) Characterizing the mesencephalon using susceptibility-weighted imaging. AJNR Am J Neuroradiol 30:569–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14:453–467

    Article  CAS  PubMed  Google Scholar 

  8. Yoneda T, Hirai T, Hiai Y, et al (2009) Triple-layer appearance of human cerebral cortices on phase-difference enhanced imaging using 3D principle of echo shifting with a train of observations (PRESTO) sequence. Proc Int Soc Magn Reson Med pp 27

  9. Hagberg GE, Welch EB, Greiser A (2010) The sign convention for phase values on different vendor systems: definition and implications for susceptibility-weighted imaging. Magn Reson Imaging 28:297–300

    Article  PubMed  Google Scholar 

  10. Yamada N, Imakita S, Sakuma T, Takamiya M (1996) Intracranial calcification on gradient-echo phase image: depiction of diamagnetic susceptibility. Radiology 198:171–178

    Article  CAS  PubMed  Google Scholar 

  11. Robinson RJ, Bhuta S (2011) Susceptibility-weighted imaging of the brain: current utility and potential applications. J Neuroimaging 21:e189–e204

    Article  PubMed  Google Scholar 

  12. Kakeda S, Korogi Y, Yoneda T et al (2011) A novel tract imaging technique of the brainstem using phase difference enhanced imaging: normal anatomy and initial experience in multiple system atrophy. Eur Radiol 21:2202–2210

    Article  PubMed  Google Scholar 

  13. Kakeda S, Korogi Y, Yoneda T et al (2013) Parkinson’s disease: diagnostic potential of high-resolution phase difference enhanced MR imaging at 3 T. Eur Radiol 23:1102–1111

    Article  PubMed  Google Scholar 

  14. Haacke EM, Ayaz M, Khan A et al (2007) Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 26:256–264

    Article  PubMed  Google Scholar 

  15. Series SC (2003) Measurement of observer agreement. Radiology 228:303–308

    Article  Google Scholar 

  16. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428

    Article  CAS  PubMed  Google Scholar 

  17. Mori N, Miki Y, Kasahara S et al (2009) Susceptibility-weighted imaging at 3 Tesla delineates the optic radiation. Invest Radiol 44:140–145

    Article  PubMed  Google Scholar 

  18. Trampel R, Ott DV, Turner R (2011) Do the congenitally blind have a stria of Gennari? First intracortical insights in vivo. Cereb Cortex 21:2075–2081

    Article  PubMed  Google Scholar 

  19. Clark VP, Courchesne E, Grafe M (1992) In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. Cereb Cortex 2:417–424

    Article  CAS  PubMed  Google Scholar 

  20. Fukunaga M, Li TQ, van Gelderen P et al (2010) Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A 107:3834–3839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ide S, Kakeda S, Korogi Y et al (2012) Delineation of optic radiation and stria of Gennari on high-resolution phase difference enhanced imaging. Acad Radiol 19:1283–1289

    Article  PubMed  Google Scholar 

  22. Li TQ, van Gelderen P, Merkle H, Talagala L, Koretsky AP, Duyn J (2006) Extensive heterogeneity in white matter intensity in high-resolution T2*-weighted MRI of the human brain at 7.0 T. Neuroimage 32:1032–1040

    Article  PubMed  Google Scholar 

  23. Kitajima M, Korogi Y, Takahashi M, Eto K (1996) MR signal intensity of the optic radiation. Am J Neuroradiol 17:1379–1383

    CAS  PubMed  Google Scholar 

  24. Petridou N, Wharton SJ, Lotfipour A, Gowland P, Bowtell R (2010) Investigating the effect of blood susceptibility on phase contrast in the human brain. Neuroimage 50:491–498

    Article  CAS  PubMed  Google Scholar 

  25. Lee J, Hirano Y, Fukunaga M, Silva AC, Duyn JH (2010) On the contribution of deoxy-hemoglobin to MRI gray-white matter phase contrast at high field. Neuroimage 49:193–198

    Article  PubMed Central  PubMed  Google Scholar 

  26. Yao B, Li TQ, Gelderen P, Shmueli K, de Zwart JA, Duyn JH (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44:1259–1266

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lee J, Shmueli K, Kang BT et al (2012) The contribution of myelin to magnetic susceptibility-weighted contrasts in high-field MRI of the brain. Neuroimage 59:3967–3975

    Article  PubMed Central  PubMed  Google Scholar 

  28. Langkammer C, Krebs N, Goessler W et al (2012) Susceptibility induced gray-white matter MRI contrast in the human brain. Neuroimage 59:1413–1419

    Article  PubMed Central  PubMed  Google Scholar 

  29. Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D (2001) Regional variation in brain capillary density and vascular response to ischemia. Brain Res 910:81–93

    Article  CAS  PubMed  Google Scholar 

  30. Bell MA, Ball MJ (1985) Laminar variation in the microvascular architecture of normal human visual cortex (area 17). Brain Res 335:139–143

    Article  CAS  PubMed  Google Scholar 

  31. Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25

    Article  CAS  PubMed  Google Scholar 

  32. Curnes JT, Burger PC, Djang WT, Boyko OB (1988) MR imaging of compact white matter pathways. Am J Neuroradiol 9:1061–1068

    CAS  PubMed  Google Scholar 

  33. Brady S, Siegel G, Albers RW, Price D (2005) Basic Neurochemistry: Molecular, cellular and medical aspects. Academic Press

  34. Liu C, Li W, Johnson GA, Wu B (2011) High-field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility. Neuroimage 56:930–938

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mackay A, Whittall K, Adler J, Li D, Paty D, Graeb D (1994) In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 31:673–677

    Article  CAS  PubMed  Google Scholar 

  36. Zhong K, Leupold J, von Elverfeldt D, Speck O (2008) The molecular basis for gray and white matter contrast in phase imaging. Neuroimage 40:1561–1566

    Article  PubMed  Google Scholar 

  37. Shmueli K, Dodd SJ, Li TQ, Duyn JH (2011) The contribution of chemical exchange to MRI frequency shifts in brain tissue. Magn Reson Med 65:35–43

    Article  PubMed Central  PubMed  Google Scholar 

  38. Saini J, Kesavadas C, Thomas B et al (2009) Susceptibility weighted imaging in the diagnostic evaluation of patients with intractable epilepsy. Epilepsia 50:1462–1473

    Article  PubMed  Google Scholar 

  39. Madan N, Grant PE (2009) New directions in clinical imaging of cortical dysplasias. Epilepsia 50(Suppl 9):9–18

    Article  PubMed  Google Scholar 

  40. van Rooden S, Versluis MJ, Liem MK et al (2014) Cortical phase changes in Alzheimer's disease at 7 T MRI: A novel imaging marker. Alzheimers Dement 10:e19–e26

    Article  PubMed  Google Scholar 

  41. Bridge H, Clare S (2006) High-resolution MRI: in vivo histology? Philos Trans R Soc B Biol Sci 361:137–146

    Article  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Guangbin Wang. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. This work was supported by the National Natural Science Foundation of China under Grant No.81171380. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. This article has not been published elsewhere in whole or in part. Methodology: prospective, experimental; performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangbin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wang, S., Yao, B. et al. Characterizing the contrast of white matter and grey matter in high-resolution phase difference enhanced imaging of human brain at 3.0 T. Eur Radiol 25, 1068–1076 (2015). https://doi.org/10.1007/s00330-014-3480-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3480-7

Keywords

Navigation