Skip to main content
Log in

MRI-based 3D pelvic autonomous innervation: a first step towards image-guided pelvic surgery

  • Experimental
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To analyse pelvic autonomous innervation with magnetic resonance imaging (MRI) in comparison with anatomical macroscopic dissection on cadavers.

Material and methods

Pelvic MRI was performed in eight adult human cadavers (five men and three women) using a total of four sequences each: T1, T1 fat saturation, T2, diffusion weighed. Images were analysed with segmentation software in order to extract nervous tissue. Key height points of the pelvis autonomous innervation were located in every specimen. Standardised pelvis dissections were then performed. Distances between the same key points and the three anatomical references forming a coordinate system were measured on MRIs and dissections. Concordance (Lin’s concordance correlation coefficient) between MRI and dissection was calculated.

Results

MRI acquisition allowed an adequate visualization of the autonomous innervation. Comparison between 3D MRI images and dissection showed concordant pictures. The statistical analysis showed a mean difference of less than 1 cm between MRI and dissection measures and a correct concordance correlation coefficient on at least two coordinates for each point.

Conclusion

Our acquisition and post-processing method demonstrated that MRI is suitable for detection of autonomous pelvic innervations and can offer a preoperative nerve cartography.

Key Points

Nerve preservation is a hot topic in pelvic surgery

High resolution MRI can show distal peripheral nerves

Anatomo-radiological comparison shows good correlation between MRI and dissection

3D reconstructions of pelvic innervation were obtained with an original method

This is a first step towards image-guided pelvic surgery

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heald RJ, Moran BJ (1998) Embryology and anatomy of the rectum. Semin Surg Oncol 15(2):66–71

    Article  CAS  PubMed  Google Scholar 

  2. Porter GA, Soskolne CL, Yakimets WW, Newman SC (1998) Surgeon-related factors and outcome in rectal cancer. Ann Surg 227(2):157–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chalfin HJ, Dinizo M, Trock BJ et al (2012) Impact of surgical margin status on prostate-cancer-specific mortality. BJU Int 110(11):1684–1689

    Article  PubMed  Google Scholar 

  4. Lange MM, Marijnen CA, Maas CP et al (2009) Risk factors for sexual dysfunction after rectal cancer treatment. Eur J Cancer 45(9):1578–1588

    Article  CAS  PubMed  Google Scholar 

  5. Marien T, Sankin A, Lepor H (2009) Factors predicting preservation of erectile function in men undergoing open radical retropubic prostatectomy. J Urol 181(4):1817–1822

    Article  PubMed  Google Scholar 

  6. Bertrand MM, Alsaid B, Droupy S, Benoit G, Prudhomme M (2013) Biomechanical origin of the Denonvilliers' fascia. Surg Radiol Anat 36(1):71–78

    Article  PubMed  Google Scholar 

  7. Alsaid B, Karam I, Bessede T et al (2010) Tridimensional computer-assisted anatomic dissection of posterolateral prostatic neurovascular bundles. Eur Urol 58(2):281–287

    Article  PubMed  Google Scholar 

  8. Heald RJ, Moran BJ, Brown G, Daniels IR (2004) Optimal total mesorectal excision for rectal cancer is by dissection in front of Denonvilliers' fascia. Br J Surg 91(1):121–123

    Article  CAS  PubMed  Google Scholar 

  9. Walsh PC, Epstein JI, Lowe FC (1987) Potency following radical prostatectomy with wide unilateral excision of the neurovascular bundle. J Urol 138(4):823–827

    CAS  PubMed  Google Scholar 

  10. Lim KS, Tan CH (2012) Diffusion-weighted MRI of adult male pelvic cancers. Clin Radiol 67(9):899–908

    Article  CAS  PubMed  Google Scholar 

  11. Beets-Tan RG, Beets GL, Vliegen RF et al (2001) Accuracy of magnetic resonance imaging in prediction of tumour-free resection margin in rectal cancer surgery. Lancet 357(9255):497–504

    Article  CAS  PubMed  Google Scholar 

  12. Brown G, Davies S, Williams GT et al (2004) Effectiveness of preoperative staging in rectal cancer: digital rectal examination, endoluminal ultrasound or magnetic resonance imaging? Br J Cancer 91(1):23–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Shihab OC, Heald RJ, Rullier E et al (2009) Defining the surgical planes on MRI improves surgery for cancer of the low rectum. Lancet Oncol 10(12):1207–1211

    Article  PubMed  Google Scholar 

  14. Mullerad M, Hricak H, Kuroiwa K et al (2005) Comparison of endorectal magnetic resonance imaging, guided prostate biopsy and digital rectal examination in the preoperative anatomical localization of prostate cancer. J Urol 174(6):2158–2163

    Article  PubMed  Google Scholar 

  15. Filler AG, Howe FA, Hayes CE et al (1993) Magnetic resonance neurography. Lancet 341(8846):659–661

    Article  CAS  PubMed  Google Scholar 

  16. Takahara T, Hendrikse J, Yamashita T et al (2008) Diffusion-weighted MR neurography of the brachial plexus: feasibility study. Radiology 249(2):653–660

    Article  PubMed  Google Scholar 

  17. Panebianco V, Sciarra A, Osimani M et al (2009) 2D and 3D T2-weighted MR sequences for the assessment of neurovascular bundle changes after nerve-sparing radical retropubic prostatectomy with erectile function correlation. Eur Radiol 19(1):220–229

    Article  PubMed  Google Scholar 

  18. Laborde E (2012) Penile rehabilitation after radical prostatectomy: con. J Urol 187(1):16–17

    PubMed  Google Scholar 

  19. Hedges JC (2012) Penile rehabilitation after radical prostatectomy: pro. J Urol 187(1):15–16

    Article  PubMed  Google Scholar 

  20. Prat-Pradal D, Metge L, Gagnard-Landra C, Mares P, Dauzat M, Godlewski G (2009) Anatomical basis of transgluteal pudendal nerve block. Surg Radiol Anat 31(4):289–293

    Article  CAS  PubMed  Google Scholar 

  21. Seewann A, Kooi EJ, Roosendaal SD, Barkhof F, van der Valk P, Geurts JJ (2009) Translating pathology in multiple sclerosis: the combination of postmortem imaging, histopathology and clinical findings. Acta Neurol Scand 119(6):349–355

    Article  CAS  PubMed  Google Scholar 

  22. Xu J, Zou Y, Zhang LH et al (2008) Postmortem MRI changes of the brains of the rats of different ages. Int J Neurosci 118(7):1039–1050

    Article  PubMed  Google Scholar 

  23. D'Arceuil H, de Crespigny A (2007) The effects of brain tissue decomposition on diffusion tensor imaging and tractography. Neuroimage 36(1):64–68

    Article  PubMed Central  PubMed  Google Scholar 

  24. Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  PubMed  Google Scholar 

  25. Baader B, Herrmann M (2003) Topography of the pelvic autonomic nervous system and its potential impact on surgical intervention in the pelvis. Clin Anat 16(2):119–130

    Article  CAS  PubMed  Google Scholar 

  26. Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45(1):255–268

    Article  CAS  PubMed  Google Scholar 

  27. Mauroy B, Demondion X, Bizet B, Claret A, Mestdagh P, Hurt C (2007) The female inferior hypogastric (=pelvic) plexus: anatomical and radiological description of the plexus and its afferences–applications to pelvic surgery. Surg Radiol Anat 29(1):55–66

    Article  CAS  PubMed  Google Scholar 

  28. Lee SE, Hong SK, Han JH et al (2007) Significance of neurovascular bundle formation observed on preoperative magnetic resonance imaging regarding postoperative erectile function after nerve-sparing radical retropubic prostatectomy. Urology 69(3):510–514

    Article  PubMed  Google Scholar 

  29. Klingberg T, Vaidya CJ, Gabrieli JD, Moseley ME, Hedehus M (1999) Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport 10(13):2817–2821

    Article  CAS  PubMed  Google Scholar 

  30. Finley DS, Ellingson BM, Natarajan S et al (2012) Diffusion tensor magnetic resonance tractography of the prostate: feasibility for mapping periprostatic fibers. Urology 80(1):219–223

    Article  PubMed  Google Scholar 

  31. Alsaid B, Bessede T, Diallo D et al (2011) Division of autonomic nerves within the neurovascular bundles distally into corpora cavernosa and corpus spongiosum components: immunohistochemical confirmation with three-dimensional reconstruction. Eur Urol 59(6):902–909

    Article  PubMed  Google Scholar 

  32. Chhabra A, Subhawong TK, Bizzell C, Flammang A, Soldatos T (2011) 3 T MR neurography using three-dimensional diffusion-weighted PSIF: technical issues and advantages. Skeletal Radiol 40(10):1355–1360

    Article  PubMed  Google Scholar 

  33. Chang KJ, Kamel IR, Macura KJ, Bluemke DA (2008) 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiographics 28(7):1983–1998

    Article  PubMed  Google Scholar 

  34. Hattori A, Suzuki N, Hashizume M et al (2003) A robotic surgery system (da Vinci) with image guided function–system architecture and cholecystectomy application. Stud Health Technol Inf 94:110–116

    Google Scholar 

  35. Alsaid B, Bessede T, Diallo D et al (2012) Computer-assisted anatomic dissection (CAAD): evolution, methodology and application in intra-pelvic innervation study. Surg Radiol Anat 34(8):721–729

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The scientific guarantor of this publication is Prof. Jean Paul Beregi (Radiology Department, CHU de Nîmes, University Montpellier 1, Nimes, France). The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. M Demattei (Statistics Department CHU Nîmes) kindly provided statistical advice for this manuscript. Institutional review board approval was not required because this is an experimental study on cadavers. Methodology: experimental, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Bertrand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertrand, M.M., Macri, F., Mazars, R. et al. MRI-based 3D pelvic autonomous innervation: a first step towards image-guided pelvic surgery. Eur Radiol 24, 1989–1997 (2014). https://doi.org/10.1007/s00330-014-3211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3211-0

Keywords

Navigation